csaf2cusa/cvrfs/2024/cvrf-openEuler-SA-2024-1681.xml
Jia Chao 0b84f3c661 增加测试用的配置和目录
Signed-off-by: Jia Chao <jiac13@chinaunicom.cn>
2024-07-02 15:51:55 +08:00

4309 lines
182 KiB
XML

<?xml version="1.0" encoding="UTF-8"?>
<cvrfdoc xmlns="http://www.icasi.org/CVRF/schema/cvrf/1.1" xmlns:cvrf="http://www.icasi.org/CVRF/schema/cvrf/1.1">
<DocumentTitle xml:lang="en">An update for kernel is now available for openEuler-22.03-LTS-SP2</DocumentTitle>
<DocumentType>Security Advisory</DocumentType>
<DocumentPublisher Type="Vendor">
<ContactDetails>openeuler-security@openeuler.org</ContactDetails>
<IssuingAuthority>openEuler security committee</IssuingAuthority>
</DocumentPublisher>
<DocumentTracking>
<Identification>
<ID>openEuler-SA-2024-1681</ID>
</Identification>
<Status>Final</Status>
<Version>1.0</Version>
<RevisionHistory>
<Revision>
<Number>1.0</Number>
<Date>2024-05-31</Date>
<Description>Initial</Description>
</Revision>
</RevisionHistory>
<InitialReleaseDate>2024-05-31</InitialReleaseDate>
<CurrentReleaseDate>2024-05-31</CurrentReleaseDate>
<Generator>
<Engine>openEuler SA Tool V1.0</Engine>
<Date>2024-05-31</Date>
</Generator>
</DocumentTracking>
<DocumentNotes>
<Note Title="Synopsis" Type="General" Ordinal="1" xml:lang="en">kernel security update</Note>
<Note Title="Summary" Type="General" Ordinal="2" xml:lang="en">An update for kernel is now available for openEuler-22.03-LTS-SP2.</Note>
<Note Title="Description" Type="General" Ordinal="3" xml:lang="en">The Linux Kernel, the operating system core itself.
Security Fix(es):
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: handle the case of pci_channel_io_frozen only in amdgpu_pci_resume
In current code, when a PCI error state pci_channel_io_normal is detectd,
it will report PCI_ERS_RESULT_CAN_RECOVER status to PCI driver, and PCI
driver will continue the execution of PCI resume callback report_resume by
pci_walk_bridge, and the callback will go into amdgpu_pci_resume
finally, where write lock is releasd unconditionally without acquiring
such lock first. In this case, a deadlock will happen when other threads
start to acquire the read lock.
To fix this, add a member in amdgpu_device strucutre to cache
pci_channel_state, and only continue the execution in amdgpu_pci_resume
when it&apos;s pci_channel_io_frozen.(CVE-2021-47421)
In the Linux kernel, the following vulnerability has been resolved:
ptp: Fix possible memory leak in ptp_clock_register()
I got memory leak as follows when doing fault injection test:
unreferenced object 0xffff88800906c618 (size 8):
comm &quot;i2c-idt82p33931&quot;, pid 4421, jiffies 4294948083 (age 13.188s)
hex dump (first 8 bytes):
70 74 70 30 00 00 00 00 ptp0....
backtrace:
[&lt;00000000312ed458&gt;] __kmalloc_track_caller+0x19f/0x3a0
[&lt;0000000079f6e2ff&gt;] kvasprintf+0xb5/0x150
[&lt;0000000026aae54f&gt;] kvasprintf_const+0x60/0x190
[&lt;00000000f323a5f7&gt;] kobject_set_name_vargs+0x56/0x150
[&lt;000000004e35abdd&gt;] dev_set_name+0xc0/0x100
[&lt;00000000f20cfe25&gt;] ptp_clock_register+0x9f4/0xd30 [ptp]
[&lt;000000008bb9f0de&gt;] idt82p33_probe.cold+0x8b6/0x1561 [ptp_idt82p33]
When posix_clock_register() returns an error, the name allocated
in dev_set_name() will be leaked, the put_device() should be used
to give up the device reference, then the name will be freed in
kobject_cleanup() and other memory will be freed in ptp_clock_release().(CVE-2021-47455)
In the Linux kernel, the following vulnerability has been resolved:
pinctrl: single: fix potential NULL dereference
Added checking of pointer &quot;function&quot; in pcs_set_mux().
pinmux_generic_get_function() can return NULL and the pointer
&quot;function&quot; was dereferenced without checking against NULL.
Found by Linux Verification Center (linuxtesting.org) with SVACE.(CVE-2022-48708)
In the Linux kernel, the following vulnerability has been resolved:
drm/tegra: dsi: Add missing check for of_find_device_by_node
Add check for the return value of of_find_device_by_node() and return
the error if it fails in order to avoid NULL pointer dereference.(CVE-2023-52650)
In the Linux kernel, the following vulnerability has been resolved:
io_uring: drop any code related to SCM_RIGHTS
This is dead code after we dropped support for passing io_uring fds
over SCM_RIGHTS, get rid of it.(CVE-2023-52656)
In the Linux kernel, the following vulnerability has been resolved:
net: atlantic: eliminate double free in error handling logic
Driver has a logic leak in ring data allocation/free,
where aq_ring_free could be called multiple times on same ring,
if system is under stress and got memory allocation error.
Ring pointer was used as an indicator of failure, but this is
not correct since only ring data is allocated/deallocated.
Ring itself is an array member.
Changing ring allocation functions to return error code directly.
This simplifies error handling and eliminates aq_ring_free
on higher layer.(CVE-2023-52664)
In the Linux kernel, the following vulnerability has been resolved:
ACPI: LPIT: Avoid u32 multiplication overflow
In lpit_update_residency() there is a possibility of overflow
in multiplication, if tsc_khz is large enough (&gt; UINT_MAX/1000).
Change multiplication to mul_u32_u32().
Found by Linux Verification Center (linuxtesting.org) with SVACE.(CVE-2023-52683)
In the Linux kernel, the following vulnerability has been resolved:
calipso: fix memory leak in netlbl_calipso_add_pass()
If IPv6 support is disabled at boot (ipv6.disable=1),
the calipso_init() -&gt; netlbl_calipso_ops_register() function isn&apos;t called,
and the netlbl_calipso_ops_get() function always returns NULL.
In this case, the netlbl_calipso_add_pass() function allocates memory
for the doi_def variable but doesn&apos;t free it with the calipso_doi_free().
BUG: memory leak
unreferenced object 0xffff888011d68180 (size 64):
comm &quot;syz-executor.1&quot;, pid 10746, jiffies 4295410986 (age 17.928s)
hex dump (first 32 bytes):
00 00 00 00 02 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[&lt;...&gt;] kmalloc include/linux/slab.h:552 [inline]
[&lt;...&gt;] netlbl_calipso_add_pass net/netlabel/netlabel_calipso.c:76 [inline]
[&lt;...&gt;] netlbl_calipso_add+0x22e/0x4f0 net/netlabel/netlabel_calipso.c:111
[&lt;...&gt;] genl_family_rcv_msg_doit+0x22f/0x330 net/netlink/genetlink.c:739
[&lt;...&gt;] genl_family_rcv_msg net/netlink/genetlink.c:783 [inline]
[&lt;...&gt;] genl_rcv_msg+0x341/0x5a0 net/netlink/genetlink.c:800
[&lt;...&gt;] netlink_rcv_skb+0x14d/0x440 net/netlink/af_netlink.c:2515
[&lt;...&gt;] genl_rcv+0x29/0x40 net/netlink/genetlink.c:811
[&lt;...&gt;] netlink_unicast_kernel net/netlink/af_netlink.c:1313 [inline]
[&lt;...&gt;] netlink_unicast+0x54b/0x800 net/netlink/af_netlink.c:1339
[&lt;...&gt;] netlink_sendmsg+0x90a/0xdf0 net/netlink/af_netlink.c:1934
[&lt;...&gt;] sock_sendmsg_nosec net/socket.c:651 [inline]
[&lt;...&gt;] sock_sendmsg+0x157/0x190 net/socket.c:671
[&lt;...&gt;] ____sys_sendmsg+0x712/0x870 net/socket.c:2342
[&lt;...&gt;] ___sys_sendmsg+0xf8/0x170 net/socket.c:2396
[&lt;...&gt;] __sys_sendmsg+0xea/0x1b0 net/socket.c:2429
[&lt;...&gt;] do_syscall_64+0x30/0x40 arch/x86/entry/common.c:46
[&lt;...&gt;] entry_SYSCALL_64_after_hwframe+0x61/0xc6
Found by InfoTeCS on behalf of Linux Verification Center
(linuxtesting.org) with Syzkaller
[PM: merged via the LSM tree at Jakub Kicinski request](CVE-2023-52698)
In the Linux kernel, the following vulnerability has been resolved:
fs/jfs: Add validity check for db_maxag and db_agpref
Both db_maxag and db_agpref are used as the index of the
db_agfree array, but there is currently no validity check for
db_maxag and db_agpref, which can lead to errors.
The following is related bug reported by Syzbot:
UBSAN: array-index-out-of-bounds in fs/jfs/jfs_dmap.c:639:20
index 7936 is out of range for type &apos;atomic_t[128]&apos;
Add checking that the values of db_maxag and db_agpref are valid
indexes for the db_agfree array.(CVE-2023-52804)
In the Linux kernel, the following vulnerability has been resolved:
crypto: pcrypt - Fix hungtask for PADATA_RESET
We found a hungtask bug in test_aead_vec_cfg as follows:
INFO: task cryptomgr_test:391009 blocked for more than 120 seconds.
&quot;echo 0 &gt; /proc/sys/kernel/hung_task_timeout_secs&quot; disables this message.
Call trace:
__switch_to+0x98/0xe0
__schedule+0x6c4/0xf40
schedule+0xd8/0x1b4
schedule_timeout+0x474/0x560
wait_for_common+0x368/0x4e0
wait_for_completion+0x20/0x30
wait_for_completion+0x20/0x30
test_aead_vec_cfg+0xab4/0xd50
test_aead+0x144/0x1f0
alg_test_aead+0xd8/0x1e0
alg_test+0x634/0x890
cryptomgr_test+0x40/0x70
kthread+0x1e0/0x220
ret_from_fork+0x10/0x18
Kernel panic - not syncing: hung_task: blocked tasks
For padata_do_parallel, when the return err is 0 or -EBUSY, it will call
wait_for_completion(&amp;wait-&gt;completion) in test_aead_vec_cfg. In normal
case, aead_request_complete() will be called in pcrypt_aead_serial and the
return err is 0 for padata_do_parallel. But, when pinst-&gt;flags is
PADATA_RESET, the return err is -EBUSY for padata_do_parallel, and it
won&apos;t call aead_request_complete(). Therefore, test_aead_vec_cfg will
hung at wait_for_completion(&amp;wait-&gt;completion), which will cause
hungtask.
The problem comes as following:
(padata_do_parallel) |
rcu_read_lock_bh(); |
err = -EINVAL; | (padata_replace)
| pinst-&gt;flags |= PADATA_RESET;
err = -EBUSY |
if (pinst-&gt;flags &amp; PADATA_RESET) |
rcu_read_unlock_bh() |
return err
In order to resolve the problem, we replace the return err -EBUSY with
-EAGAIN, which means parallel_data is changing, and the caller should call
it again.
v3:
remove retry and just change the return err.
v2:
introduce padata_try_do_parallel() in pcrypt_aead_encrypt and
pcrypt_aead_decrypt to solve the hungtask.(CVE-2023-52813)
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Fix a null pointer access when the smc_rreg pointer is NULL
In certain types of chips, such as VEGA20, reading the amdgpu_regs_smc file could result in an abnormal null pointer access when the smc_rreg pointer is NULL. Below are the steps to reproduce this issue and the corresponding exception log:
1. Navigate to the directory: /sys/kernel/debug/dri/0
2. Execute command: cat amdgpu_regs_smc
3. Exception Log::
[4005007.702554] BUG: kernel NULL pointer dereference, address: 0000000000000000
[4005007.702562] #PF: supervisor instruction fetch in kernel mode
[4005007.702567] #PF: error_code(0x0010) - not-present page
[4005007.702570] PGD 0 P4D 0
[4005007.702576] Oops: 0010 [#1] SMP NOPTI
[4005007.702581] CPU: 4 PID: 62563 Comm: cat Tainted: G OE 5.15.0-43-generic #46-Ubunt u
[4005007.702590] RIP: 0010:0x0
[4005007.702598] Code: Unable to access opcode bytes at RIP 0xffffffffffffffd6.
[4005007.702600] RSP: 0018:ffffa82b46d27da0 EFLAGS: 00010206
[4005007.702605] RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffa82b46d27e68
[4005007.702609] RDX: 0000000000000001 RSI: 0000000000000000 RDI: ffff9940656e0000
[4005007.702612] RBP: ffffa82b46d27dd8 R08: 0000000000000000 R09: ffff994060c07980
[4005007.702615] R10: 0000000000020000 R11: 0000000000000000 R12: 00007f5e06753000
[4005007.702618] R13: ffff9940656e0000 R14: ffffa82b46d27e68 R15: 00007f5e06753000
[4005007.702622] FS: 00007f5e0755b740(0000) GS:ffff99479d300000(0000) knlGS:0000000000000000
[4005007.702626] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[4005007.702629] CR2: ffffffffffffffd6 CR3: 00000003253fc000 CR4: 00000000003506e0
[4005007.702633] Call Trace:
[4005007.702636] &lt;TASK&gt;
[4005007.702640] amdgpu_debugfs_regs_smc_read+0xb0/0x120 [amdgpu]
[4005007.703002] full_proxy_read+0x5c/0x80
[4005007.703011] vfs_read+0x9f/0x1a0
[4005007.703019] ksys_read+0x67/0xe0
[4005007.703023] __x64_sys_read+0x19/0x20
[4005007.703028] do_syscall_64+0x5c/0xc0
[4005007.703034] ? do_user_addr_fault+0x1e3/0x670
[4005007.703040] ? exit_to_user_mode_prepare+0x37/0xb0
[4005007.703047] ? irqentry_exit_to_user_mode+0x9/0x20
[4005007.703052] ? irqentry_exit+0x19/0x30
[4005007.703057] ? exc_page_fault+0x89/0x160
[4005007.703062] ? asm_exc_page_fault+0x8/0x30
[4005007.703068] entry_SYSCALL_64_after_hwframe+0x44/0xae
[4005007.703075] RIP: 0033:0x7f5e07672992
[4005007.703079] Code: c0 e9 b2 fe ff ff 50 48 8d 3d fa b2 0c 00 e8 c5 1d 02 00 0f 1f 44 00 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 0f 05 &lt;48&gt; 3d 00 f0 ff ff 77 56 c3 0f 1f 44 00 00 48 83 e c 28 48 89 54 24
[4005007.703083] RSP: 002b:00007ffe03097898 EFLAGS: 00000246 ORIG_RAX: 0000000000000000
[4005007.703088] RAX: ffffffffffffffda RBX: 0000000000020000 RCX: 00007f5e07672992
[4005007.703091] RDX: 0000000000020000 RSI: 00007f5e06753000 RDI: 0000000000000003
[4005007.703094] RBP: 00007f5e06753000 R08: 00007f5e06752010 R09: 00007f5e06752010
[4005007.703096] R10: 0000000000000022 R11: 0000000000000246 R12: 0000000000022000
[4005007.703099] R13: 0000000000000003 R14: 0000000000020000 R15: 0000000000020000
[4005007.703105] &lt;/TASK&gt;
[4005007.703107] Modules linked in: nf_tables libcrc32c nfnetlink algif_hash af_alg binfmt_misc nls_ iso8859_1 ipmi_ssif ast intel_rapl_msr intel_rapl_common drm_vram_helper drm_ttm_helper amd64_edac t tm edac_mce_amd kvm_amd ccp mac_hid k10temp kvm acpi_ipmi ipmi_si rapl sch_fq_codel ipmi_devintf ipm i_msghandler msr parport_pc ppdev lp parport mtd pstore_blk efi_pstore ramoops pstore_zone reed_solo mon ip_tables x_tables autofs4 ib_uverbs ib_core amdgpu(OE) amddrm_ttm_helper(OE) amdttm(OE) iommu_v 2 amd_sched(OE) amdkcl(OE) drm_kms_helper syscopyarea sysfillrect sysimgblt fb_sys_fops cec rc_core drm igb ahci xhci_pci libahci i2c_piix4 i2c_algo_bit xhci_pci_renesas dca
[4005007.703184] CR2: 0000000000000000
[4005007.703188] ---[ en
---truncated---(CVE-2023-52817)
In the Linux kernel, the following vulnerability has been resolved:
perf/core: Bail out early if the request AUX area is out of bound
When perf-record with a large AUX area, e.g 4GB, it fails with:
#perf record -C 0 -m ,4G -e arm_spe_0// -- sleep 1
failed to mmap with 12 (Cannot allocate memory)
and it reveals a WARNING with __alloc_pages():
------------[ cut here ]------------
WARNING: CPU: 44 PID: 17573 at mm/page_alloc.c:5568 __alloc_pages+0x1ec/0x248
Call trace:
__alloc_pages+0x1ec/0x248
__kmalloc_large_node+0xc0/0x1f8
__kmalloc_node+0x134/0x1e8
rb_alloc_aux+0xe0/0x298
perf_mmap+0x440/0x660
mmap_region+0x308/0x8a8
do_mmap+0x3c0/0x528
vm_mmap_pgoff+0xf4/0x1b8
ksys_mmap_pgoff+0x18c/0x218
__arm64_sys_mmap+0x38/0x58
invoke_syscall+0x50/0x128
el0_svc_common.constprop.0+0x58/0x188
do_el0_svc+0x34/0x50
el0_svc+0x34/0x108
el0t_64_sync_handler+0xb8/0xc0
el0t_64_sync+0x1a4/0x1a8
&apos;rb-&gt;aux_pages&apos; allocated by kcalloc() is a pointer array which is used to
maintains AUX trace pages. The allocated page for this array is physically
contiguous (and virtually contiguous) with an order of 0..MAX_ORDER. If the
size of pointer array crosses the limitation set by MAX_ORDER, it reveals a
WARNING.
So bail out early with -ENOMEM if the request AUX area is out of bound,
e.g.:
#perf record -C 0 -m ,4G -e arm_spe_0// -- sleep 1
failed to mmap with 12 (Cannot allocate memory)(CVE-2023-52835)
In the Linux kernel, the following vulnerability has been resolved:
nbd: fix uaf in nbd_open
Commit 4af5f2e03013 (&quot;nbd: use blk_mq_alloc_disk and
blk_cleanup_disk&quot;) cleans up disk by blk_cleanup_disk() and it won&apos;t set
disk-&gt;private_data as NULL as before. UAF may be triggered in nbd_open()
if someone tries to open nbd device right after nbd_put() since nbd has
been free in nbd_dev_remove().
Fix this by implementing -&gt;free_disk and free private data in it.(CVE-2023-52837)
In the Linux kernel, the following vulnerability has been resolved:
media: vidtv: psi: Add check for kstrdup
Add check for the return value of kstrdup() and return the error
if it fails in order to avoid NULL pointer dereference.(CVE-2023-52844)
In the Linux kernel, the following vulnerability has been resolved:
drivers/perf: hisi: use cpuhp_state_remove_instance_nocalls() for hisi_hns3_pmu uninit process
When tearing down a &apos;hisi_hns3&apos; PMU, we mistakenly run the CPU hotplug
callbacks after the device has been unregistered, leading to fireworks
when we try to execute empty function callbacks within the driver:
| Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
| CPU: 0 PID: 15 Comm: cpuhp/0 Tainted: G W O 5.12.0-rc4+ #1
| Hardware name: , BIOS KpxxxFPGA 1P B600 V143 04/22/2021
| pstate: 80400009 (Nzcv daif +PAN -UAO -TCO BTYPE=--)
| pc : perf_pmu_migrate_context+0x98/0x38c
| lr : perf_pmu_migrate_context+0x94/0x38c
|
| Call trace:
| perf_pmu_migrate_context+0x98/0x38c
| hisi_hns3_pmu_offline_cpu+0x104/0x12c [hisi_hns3_pmu]
Use cpuhp_state_remove_instance_nocalls() instead of
cpuhp_state_remove_instance() so that the notifiers don&apos;t execute after
the PMU device has been unregistered.
[will: Rewrote commit message](CVE-2023-52860)
In the Linux kernel, the following vulnerability has been resolved:
drm/radeon: possible buffer overflow
Buffer &apos;afmt_status&apos; of size 6 could overflow, since index &apos;afmt_idx&apos; is
checked after access.(CVE-2023-52867)
In the Linux kernel, the following vulnerability has been resolved:
tracing: Have trace_event_file have ref counters
The following can crash the kernel:
# cd /sys/kernel/tracing
# echo &apos;p:sched schedule&apos; &gt; kprobe_events
# exec 5&gt;&gt;events/kprobes/sched/enable
# &gt; kprobe_events
# exec 5&gt;&amp;-
The above commands:
1. Change directory to the tracefs directory
2. Create a kprobe event (doesn&apos;t matter what one)
3. Open bash file descriptor 5 on the enable file of the kprobe event
4. Delete the kprobe event (removes the files too)
5. Close the bash file descriptor 5
The above causes a crash!
BUG: kernel NULL pointer dereference, address: 0000000000000028
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 6 PID: 877 Comm: bash Not tainted 6.5.0-rc4-test-00008-g2c6b6b1029d4-dirty #186
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
RIP: 0010:tracing_release_file_tr+0xc/0x50
What happens here is that the kprobe event creates a trace_event_file
&quot;file&quot; descriptor that represents the file in tracefs to the event. It
maintains state of the event (is it enabled for the given instance?).
Opening the &quot;enable&quot; file gets a reference to the event &quot;file&quot; descriptor
via the open file descriptor. When the kprobe event is deleted, the file is
also deleted from the tracefs system which also frees the event &quot;file&quot;
descriptor.
But as the tracefs file is still opened by user space, it will not be
totally removed until the final dput() is called on it. But this is not
true with the event &quot;file&quot; descriptor that is already freed. If the user
does a write to or simply closes the file descriptor it will reference the
event &quot;file&quot; descriptor that was just freed, causing a use-after-free bug.
To solve this, add a ref count to the event &quot;file&quot; descriptor as well as a
new flag called &quot;FREED&quot;. The &quot;file&quot; will not be freed until the last
reference is released. But the FREE flag will be set when the event is
removed to prevent any more modifications to that event from happening,
even if there&apos;s still a reference to the event &quot;file&quot; descriptor.(CVE-2023-52879)
In the Linux kernel, the following vulnerability has been resolved:
mmc: mmci: stm32: fix DMA API overlapping mappings warning
Turning on CONFIG_DMA_API_DEBUG_SG results in the following warning:
DMA-API: mmci-pl18x 48220000.mmc: cacheline tracking EEXIST,
overlapping mappings aren&apos;t supported
WARNING: CPU: 1 PID: 51 at kernel/dma/debug.c:568
add_dma_entry+0x234/0x2f4
Modules linked in:
CPU: 1 PID: 51 Comm: kworker/1:2 Not tainted 6.1.28 #1
Hardware name: STMicroelectronics STM32MP257F-EV1 Evaluation Board (DT)
Workqueue: events_freezable mmc_rescan
Call trace:
add_dma_entry+0x234/0x2f4
debug_dma_map_sg+0x198/0x350
__dma_map_sg_attrs+0xa0/0x110
dma_map_sg_attrs+0x10/0x2c
sdmmc_idma_prep_data+0x80/0xc0
mmci_prep_data+0x38/0x84
mmci_start_data+0x108/0x2dc
mmci_request+0xe4/0x190
__mmc_start_request+0x68/0x140
mmc_start_request+0x94/0xc0
mmc_wait_for_req+0x70/0x100
mmc_send_tuning+0x108/0x1ac
sdmmc_execute_tuning+0x14c/0x210
mmc_execute_tuning+0x48/0xec
mmc_sd_init_uhs_card.part.0+0x208/0x464
mmc_sd_init_card+0x318/0x89c
mmc_attach_sd+0xe4/0x180
mmc_rescan+0x244/0x320
DMA API debug brings to light leaking dma-mappings as dma_map_sg and
dma_unmap_sg are not correctly balanced.
If an error occurs in mmci_cmd_irq function, only mmci_dma_error
function is called and as this API is not managed on stm32 variant,
dma_unmap_sg is never called in this error path.(CVE-2024-26787)
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Avoid potential use-after-free in hci_error_reset
While handling the HCI_EV_HARDWARE_ERROR event, if the underlying
BT controller is not responding, the GPIO reset mechanism would
free the hci_dev and lead to a use-after-free in hci_error_reset.
Here&apos;s the call trace observed on a ChromeOS device with Intel AX201:
queue_work_on+0x3e/0x6c
__hci_cmd_sync_sk+0x2ee/0x4c0 [bluetooth &lt;HASH:3b4a6&gt;]
? init_wait_entry+0x31/0x31
__hci_cmd_sync+0x16/0x20 [bluetooth &lt;HASH:3b4a 6&gt;]
hci_error_reset+0x4f/0xa4 [bluetooth &lt;HASH:3b4a 6&gt;]
process_one_work+0x1d8/0x33f
worker_thread+0x21b/0x373
kthread+0x13a/0x152
? pr_cont_work+0x54/0x54
? kthread_blkcg+0x31/0x31
ret_from_fork+0x1f/0x30
This patch holds the reference count on the hci_dev while processing
a HCI_EV_HARDWARE_ERROR event to avoid potential crash.(CVE-2024-26801)
In the Linux kernel, the following vulnerability has been resolved:
vfio/fsl-mc: Block calling interrupt handler without trigger
The eventfd_ctx trigger pointer of the vfio_fsl_mc_irq object is
initially NULL and may become NULL if the user sets the trigger
eventfd to -1. The interrupt handler itself is guaranteed that
trigger is always valid between request_irq() and free_irq(), but
the loopback testing mechanisms to invoke the handler function
need to test the trigger. The triggering and setting ioctl paths
both make use of igate and are therefore mutually exclusive.
The vfio-fsl-mc driver does not make use of irqfds, nor does it
support any sort of masking operations, therefore unlike vfio-pci
and vfio-platform, the flow can remain essentially unchanged.(CVE-2024-26814)
In the Linux kernel, the following vulnerability has been resolved:
net: hns3: fix kernel crash when 1588 is received on HIP08 devices
The HIP08 devices does not register the ptp devices, so the
hdev-&gt;ptp is NULL, but the hardware can receive 1588 messages,
and set the HNS3_RXD_TS_VLD_B bit, so, if match this case, the
access of hdev-&gt;ptp-&gt;flags will cause a kernel crash:
[ 5888.946472] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000018
[ 5888.946475] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000018
...
[ 5889.266118] pc : hclge_ptp_get_rx_hwts+0x40/0x170 [hclge]
[ 5889.272612] lr : hclge_ptp_get_rx_hwts+0x34/0x170 [hclge]
[ 5889.279101] sp : ffff800012c3bc50
[ 5889.283516] x29: ffff800012c3bc50 x28: ffff2040002be040
[ 5889.289927] x27: ffff800009116484 x26: 0000000080007500
[ 5889.296333] x25: 0000000000000000 x24: ffff204001c6f000
[ 5889.302738] x23: ffff204144f53c00 x22: 0000000000000000
[ 5889.309134] x21: 0000000000000000 x20: ffff204004220080
[ 5889.315520] x19: ffff204144f53c00 x18: 0000000000000000
[ 5889.321897] x17: 0000000000000000 x16: 0000000000000000
[ 5889.328263] x15: 0000004000140ec8 x14: 0000000000000000
[ 5889.334617] x13: 0000000000000000 x12: 00000000010011df
[ 5889.340965] x11: bbfeff4d22000000 x10: 0000000000000000
[ 5889.347303] x9 : ffff800009402124 x8 : 0200f78811dfbb4d
[ 5889.353637] x7 : 2200000000191b01 x6 : ffff208002a7d480
[ 5889.359959] x5 : 0000000000000000 x4 : 0000000000000000
[ 5889.366271] x3 : 0000000000000000 x2 : 0000000000000000
[ 5889.372567] x1 : 0000000000000000 x0 : ffff20400095c080
[ 5889.378857] Call trace:
[ 5889.382285] hclge_ptp_get_rx_hwts+0x40/0x170 [hclge]
[ 5889.388304] hns3_handle_bdinfo+0x324/0x410 [hns3]
[ 5889.394055] hns3_handle_rx_bd+0x60/0x150 [hns3]
[ 5889.399624] hns3_clean_rx_ring+0x84/0x170 [hns3]
[ 5889.405270] hns3_nic_common_poll+0xa8/0x220 [hns3]
[ 5889.411084] napi_poll+0xcc/0x264
[ 5889.415329] net_rx_action+0xd4/0x21c
[ 5889.419911] __do_softirq+0x130/0x358
[ 5889.424484] irq_exit+0x134/0x154
[ 5889.428700] __handle_domain_irq+0x88/0xf0
[ 5889.433684] gic_handle_irq+0x78/0x2c0
[ 5889.438319] el1_irq+0xb8/0x140
[ 5889.442354] arch_cpu_idle+0x18/0x40
[ 5889.446816] default_idle_call+0x5c/0x1c0
[ 5889.451714] cpuidle_idle_call+0x174/0x1b0
[ 5889.456692] do_idle+0xc8/0x160
[ 5889.460717] cpu_startup_entry+0x30/0xfc
[ 5889.465523] secondary_start_kernel+0x158/0x1ec
[ 5889.470936] Code: 97ffab78 f9411c14 91408294 f9457284 (f9400c80)
[ 5889.477950] SMP: stopping secondary CPUs
[ 5890.514626] SMP: failed to stop secondary CPUs 0-69,71-95
[ 5890.522951] Starting crashdump kernel...(CVE-2024-26881)
In the Linux kernel, the following vulnerability has been resolved:
af_unix: Fix garbage collector racing against connect()
Garbage collector does not take into account the risk of embryo getting
enqueued during the garbage collection. If such embryo has a peer that
carries SCM_RIGHTS, two consecutive passes of scan_children() may see a
different set of children. Leading to an incorrectly elevated inflight
count, and then a dangling pointer within the gc_inflight_list.
sockets are AF_UNIX/SOCK_STREAM
S is an unconnected socket
L is a listening in-flight socket bound to addr, not in fdtable
V&apos;s fd will be passed via sendmsg(), gets inflight count bumped
connect(S, addr) sendmsg(S, [V]); close(V) __unix_gc()
---------------- ------------------------- -----------
NS = unix_create1()
skb1 = sock_wmalloc(NS)
L = unix_find_other(addr)
unix_state_lock(L)
unix_peer(S) = NS
// V count=1 inflight=0
NS = unix_peer(S)
skb2 = sock_alloc()
skb_queue_tail(NS, skb2[V])
// V became in-flight
// V count=2 inflight=1
close(V)
// V count=1 inflight=1
// GC candidate condition met
for u in gc_inflight_list:
if (total_refs == inflight_refs)
add u to gc_candidates
// gc_candidates={L, V}
for u in gc_candidates:
scan_children(u, dec_inflight)
// embryo (skb1) was not
// reachable from L yet, so V&apos;s
// inflight remains unchanged
__skb_queue_tail(L, skb1)
unix_state_unlock(L)
for u in gc_candidates:
if (u.inflight)
scan_children(u, inc_inflight_move_tail)
// V count=1 inflight=2 (!)
If there is a GC-candidate listening socket, lock/unlock its state. This
makes GC wait until the end of any ongoing connect() to that socket. After
flipping the lock, a possibly SCM-laden embryo is already enqueued. And if
there is another embryo coming, it can not possibly carry SCM_RIGHTS. At
this point, unix_inflight() can not happen because unix_gc_lock is already
taken. Inflight graph remains unaffected.(CVE-2024-26923)
In the Linux kernel, the following vulnerability has been resolved:
wireguard: netlink: access device through ctx instead of peer
The previous commit fixed a bug that led to a NULL peer-&gt;device being
dereferenced. It&apos;s actually easier and faster performance-wise to
instead get the device from ctx-&gt;wg. This semantically makes more sense
too, since ctx-&gt;wg-&gt;peer_allowedips.seq is compared with
ctx-&gt;allowedips_seq, basing them both in ctx. This also acts as a
defence in depth provision against freed peers.(CVE-2024-26950)
In the Linux kernel, the following vulnerability has been resolved:
nfs: fix UAF in direct writes
In production we have been hitting the following warning consistently
------------[ cut here ]------------
refcount_t: underflow; use-after-free.
WARNING: CPU: 17 PID: 1800359 at lib/refcount.c:28 refcount_warn_saturate+0x9c/0xe0
Workqueue: nfsiod nfs_direct_write_schedule_work [nfs]
RIP: 0010:refcount_warn_saturate+0x9c/0xe0
PKRU: 55555554
Call Trace:
&lt;TASK&gt;
? __warn+0x9f/0x130
? refcount_warn_saturate+0x9c/0xe0
? report_bug+0xcc/0x150
? handle_bug+0x3d/0x70
? exc_invalid_op+0x16/0x40
? asm_exc_invalid_op+0x16/0x20
? refcount_warn_saturate+0x9c/0xe0
nfs_direct_write_schedule_work+0x237/0x250 [nfs]
process_one_work+0x12f/0x4a0
worker_thread+0x14e/0x3b0
? ZSTD_getCParams_internal+0x220/0x220
kthread+0xdc/0x120
? __btf_name_valid+0xa0/0xa0
ret_from_fork+0x1f/0x30
This is because we&apos;re completing the nfs_direct_request twice in a row.
The source of this is when we have our commit requests to submit, we
process them and send them off, and then in the completion path for the
commit requests we have
if (nfs_commit_end(cinfo.mds))
nfs_direct_write_complete(dreq);
However since we&apos;re submitting asynchronous requests we sometimes have
one that completes before we submit the next one, so we end up calling
complete on the nfs_direct_request twice.
The only other place we use nfs_generic_commit_list() is in
__nfs_commit_inode, which wraps this call in a
nfs_commit_begin();
nfs_commit_end();
Which is a common pattern for this style of completion handling, one
that is also repeated in the direct code with get_dreq()/put_dreq()
calls around where we process events as well as in the completion paths.
Fix this by using the same pattern for the commit requests.
Before with my 200 node rocksdb stress running this warning would pop
every 10ish minutes. With my patch the stress test has been running for
several hours without popping.(CVE-2024-26958)
In the Linux kernel, the following vulnerability has been resolved:
mac802154: fix llsec key resources release in mac802154_llsec_key_del
mac802154_llsec_key_del() can free resources of a key directly without
following the RCU rules for waiting before the end of a grace period. This
may lead to use-after-free in case llsec_lookup_key() is traversing the
list of keys in parallel with a key deletion:
refcount_t: addition on 0; use-after-free.
WARNING: CPU: 4 PID: 16000 at lib/refcount.c:25 refcount_warn_saturate+0x162/0x2a0
Modules linked in:
CPU: 4 PID: 16000 Comm: wpan-ping Not tainted 6.7.0 #19
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
RIP: 0010:refcount_warn_saturate+0x162/0x2a0
Call Trace:
&lt;TASK&gt;
llsec_lookup_key.isra.0+0x890/0x9e0
mac802154_llsec_encrypt+0x30c/0x9c0
ieee802154_subif_start_xmit+0x24/0x1e0
dev_hard_start_xmit+0x13e/0x690
sch_direct_xmit+0x2ae/0xbc0
__dev_queue_xmit+0x11dd/0x3c20
dgram_sendmsg+0x90b/0xd60
__sys_sendto+0x466/0x4c0
__x64_sys_sendto+0xe0/0x1c0
do_syscall_64+0x45/0xf0
entry_SYSCALL_64_after_hwframe+0x6e/0x76
Also, ieee802154_llsec_key_entry structures are not freed by
mac802154_llsec_key_del():
unreferenced object 0xffff8880613b6980 (size 64):
comm &quot;iwpan&quot;, pid 2176, jiffies 4294761134 (age 60.475s)
hex dump (first 32 bytes):
78 0d 8f 18 80 88 ff ff 22 01 00 00 00 00 ad de x.......&quot;.......
00 00 00 00 00 00 00 00 03 00 cd ab 00 00 00 00 ................
backtrace:
[&lt;ffffffff81dcfa62&gt;] __kmem_cache_alloc_node+0x1e2/0x2d0
[&lt;ffffffff81c43865&gt;] kmalloc_trace+0x25/0xc0
[&lt;ffffffff88968b09&gt;] mac802154_llsec_key_add+0xac9/0xcf0
[&lt;ffffffff8896e41a&gt;] ieee802154_add_llsec_key+0x5a/0x80
[&lt;ffffffff8892adc6&gt;] nl802154_add_llsec_key+0x426/0x5b0
[&lt;ffffffff86ff293e&gt;] genl_family_rcv_msg_doit+0x1fe/0x2f0
[&lt;ffffffff86ff46d1&gt;] genl_rcv_msg+0x531/0x7d0
[&lt;ffffffff86fee7a9&gt;] netlink_rcv_skb+0x169/0x440
[&lt;ffffffff86ff1d88&gt;] genl_rcv+0x28/0x40
[&lt;ffffffff86fec15c&gt;] netlink_unicast+0x53c/0x820
[&lt;ffffffff86fecd8b&gt;] netlink_sendmsg+0x93b/0xe60
[&lt;ffffffff86b91b35&gt;] ____sys_sendmsg+0xac5/0xca0
[&lt;ffffffff86b9c3dd&gt;] ___sys_sendmsg+0x11d/0x1c0
[&lt;ffffffff86b9c65a&gt;] __sys_sendmsg+0xfa/0x1d0
[&lt;ffffffff88eadbf5&gt;] do_syscall_64+0x45/0xf0
[&lt;ffffffff890000ea&gt;] entry_SYSCALL_64_after_hwframe+0x6e/0x76
Handle the proper resource release in the RCU callback function
mac802154_llsec_key_del_rcu().
Note that if llsec_lookup_key() finds a key, it gets a refcount via
llsec_key_get() and locally copies key id from key_entry (which is a
list element). So it&apos;s safe to call llsec_key_put() and free the list
entry after the RCU grace period elapses.
Found by Linux Verification Center (linuxtesting.org).(CVE-2024-26961)
In the Linux kernel, the following vulnerability has been resolved:
clk: qcom: mmcc-msm8974: fix terminating of frequency table arrays
The frequency table arrays are supposed to be terminated with an
empty element. Add such entry to the end of the arrays where it
is missing in order to avoid possible out-of-bound access when
the table is traversed by functions like qcom_find_freq() or
qcom_find_freq_floor().
Only compile tested.(CVE-2024-26965)
In the Linux kernel, the following vulnerability has been resolved:
KVM: Always flush async #PF workqueue when vCPU is being destroyed
Always flush the per-vCPU async #PF workqueue when a vCPU is clearing its
completion queue, e.g. when a VM and all its vCPUs is being destroyed.
KVM must ensure that none of its workqueue callbacks is running when the
last reference to the KVM _module_ is put. Gifting a reference to the
associated VM prevents the workqueue callback from dereferencing freed
vCPU/VM memory, but does not prevent the KVM module from being unloaded
before the callback completes.
Drop the misguided VM refcount gifting, as calling kvm_put_kvm() from
async_pf_execute() if kvm_put_kvm() flushes the async #PF workqueue will
result in deadlock. async_pf_execute() can&apos;t return until kvm_put_kvm()
finishes, and kvm_put_kvm() can&apos;t return until async_pf_execute() finishes:
WARNING: CPU: 8 PID: 251 at virt/kvm/kvm_main.c:1435 kvm_put_kvm+0x2d/0x320 [kvm]
Modules linked in: vhost_net vhost vhost_iotlb tap kvm_intel kvm irqbypass
CPU: 8 PID: 251 Comm: kworker/8:1 Tainted: G W 6.6.0-rc1-e7af8d17224a-x86/gmem-vm #119
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
Workqueue: events async_pf_execute [kvm]
RIP: 0010:kvm_put_kvm+0x2d/0x320 [kvm]
Call Trace:
&lt;TASK&gt;
async_pf_execute+0x198/0x260 [kvm]
process_one_work+0x145/0x2d0
worker_thread+0x27e/0x3a0
kthread+0xba/0xe0
ret_from_fork+0x2d/0x50
ret_from_fork_asm+0x11/0x20
&lt;/TASK&gt;
---[ end trace 0000000000000000 ]---
INFO: task kworker/8:1:251 blocked for more than 120 seconds.
Tainted: G W 6.6.0-rc1-e7af8d17224a-x86/gmem-vm #119
&quot;echo 0 &gt; /proc/sys/kernel/hung_task_timeout_secs&quot; disables this message.
task:kworker/8:1 state:D stack:0 pid:251 ppid:2 flags:0x00004000
Workqueue: events async_pf_execute [kvm]
Call Trace:
&lt;TASK&gt;
__schedule+0x33f/0xa40
schedule+0x53/0xc0
schedule_timeout+0x12a/0x140
__wait_for_common+0x8d/0x1d0
__flush_work.isra.0+0x19f/0x2c0
kvm_clear_async_pf_completion_queue+0x129/0x190 [kvm]
kvm_arch_destroy_vm+0x78/0x1b0 [kvm]
kvm_put_kvm+0x1c1/0x320 [kvm]
async_pf_execute+0x198/0x260 [kvm]
process_one_work+0x145/0x2d0
worker_thread+0x27e/0x3a0
kthread+0xba/0xe0
ret_from_fork+0x2d/0x50
ret_from_fork_asm+0x11/0x20
&lt;/TASK&gt;
If kvm_clear_async_pf_completion_queue() actually flushes the workqueue,
then there&apos;s no need to gift async_pf_execute() a reference because all
invocations of async_pf_execute() will be forced to complete before the
vCPU and its VM are destroyed/freed. And that in turn fixes the module
unloading bug as __fput() won&apos;t do module_put() on the last vCPU reference
until the vCPU has been freed, e.g. if closing the vCPU file also puts the
last reference to the KVM module.
Note that kvm_check_async_pf_completion() may also take the work item off
the completion queue and so also needs to flush the work queue, as the
work will not be seen by kvm_clear_async_pf_completion_queue(). Waiting
on the workqueue could theoretically delay a vCPU due to waiting for the
work to complete, but that&apos;s a very, very small chance, and likely a very
small delay. kvm_arch_async_page_present_queued() unconditionally makes a
new request, i.e. will effectively delay entering the guest, so the
remaining work is really just:
trace_kvm_async_pf_completed(addr, cr2_or_gpa);
__kvm_vcpu_wake_up(vcpu);
mmput(mm);
and mmput() can&apos;t drop the last reference to the page tables if the vCPU is
still alive, i.e. the vCPU won&apos;t get stuck tearing down page tables.
Add a helper to do the flushing, specifically to deal with &quot;wakeup all&quot;
work items, as they aren&apos;t actually work items, i.e. are never placed in a
workqueue. Trying to flush a bogus workqueue entry rightly makes
__flush_work() complain (kudos to whoever added that sanity check).
Note, commit 5f6de5cbebee (&quot;KVM: Prevent module exit until al
---truncated---(CVE-2024-26976)
In the Linux kernel, the following vulnerability has been resolved:
Squashfs: check the inode number is not the invalid value of zero
Syskiller has produced an out of bounds access in fill_meta_index().
That out of bounds access is ultimately caused because the inode
has an inode number with the invalid value of zero, which was not checked.
The reason this causes the out of bounds access is due to following
sequence of events:
1. Fill_meta_index() is called to allocate (via empty_meta_index())
and fill a metadata index. It however suffers a data read error
and aborts, invalidating the newly returned empty metadata index.
It does this by setting the inode number of the index to zero,
which means unused (zero is not a valid inode number).
2. When fill_meta_index() is subsequently called again on another
read operation, locate_meta_index() returns the previous index
because it matches the inode number of 0. Because this index
has been returned it is expected to have been filled, and because
it hasn&apos;t been, an out of bounds access is performed.
This patch adds a sanity check which checks that the inode number
is not zero when the inode is created and returns -EINVAL if it is.
[phillip@squashfs.org.uk: whitespace fix]
Link: https://lkml.kernel.org/r/20240409204723.446925-1-phillip@squashfs.org.uk(CVE-2024-26982)
In the Linux kernel, the following vulnerability has been resolved:
fs: sysfs: Fix reference leak in sysfs_break_active_protection()
The sysfs_break_active_protection() routine has an obvious reference
leak in its error path. If the call to kernfs_find_and_get() fails then
kn will be NULL, so the companion sysfs_unbreak_active_protection()
routine won&apos;t get called (and would only cause an access violation by
trying to dereference kn-&gt;parent if it was called). As a result, the
reference to kobj acquired at the start of the function will never be
released.
Fix the leak by adding an explicit kobject_put() call when kn is NULL.(CVE-2024-26993)
In the Linux kernel, the following vulnerability has been resolved:
serial: mxs-auart: add spinlock around changing cts state
The uart_handle_cts_change() function in serial_core expects the caller
to hold uport-&gt;lock. For example, I have seen the below kernel splat,
when the Bluetooth driver is loaded on an i.MX28 board.
[ 85.119255] ------------[ cut here ]------------
[ 85.124413] WARNING: CPU: 0 PID: 27 at /drivers/tty/serial/serial_core.c:3453 uart_handle_cts_change+0xb4/0xec
[ 85.134694] Modules linked in: hci_uart bluetooth ecdh_generic ecc wlcore_sdio configfs
[ 85.143314] CPU: 0 PID: 27 Comm: kworker/u3:0 Not tainted 6.6.3-00021-gd62a2f068f92 #1
[ 85.151396] Hardware name: Freescale MXS (Device Tree)
[ 85.156679] Workqueue: hci0 hci_power_on [bluetooth]
(...)
[ 85.191765] uart_handle_cts_change from mxs_auart_irq_handle+0x380/0x3f4
[ 85.198787] mxs_auart_irq_handle from __handle_irq_event_percpu+0x88/0x210
(...)(CVE-2024-27000)
In the Linux kernel, the following vulnerability has been resolved:
drm: nv04: Fix out of bounds access
When Output Resource (dcb-&gt;or) value is assigned in
fabricate_dcb_output(), there may be out of bounds access to
dac_users array in case dcb-&gt;or is zero because ffs(dcb-&gt;or) is
used as index there.
The &apos;or&apos; argument of fabricate_dcb_output() must be interpreted as a
number of bit to set, not value.
Utilize macros from &apos;enum nouveau_or&apos; in calls instead of hardcoding.
Found by Linux Verification Center (linuxtesting.org) with SVACE.(CVE-2024-27008)
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix a potential buffer overflow in &apos;dp_dsc_clock_en_read()&apos;
Tell snprintf() to store at most 10 bytes in the output buffer
instead of 30.
Fixes the below:
drivers/gpu/drm/amd/amdgpu/../display/amdgpu_dm/amdgpu_dm_debugfs.c:1508 dp_dsc_clock_en_read() error: snprintf() is printing too much 30 vs 10(CVE-2024-27045)
In the Linux kernel, the following vulnerability has been resolved:
USB: usb-storage: Prevent divide-by-0 error in isd200_ata_command
The isd200 sub-driver in usb-storage uses the HEADS and SECTORS values
in the ATA ID information to calculate cylinder and head values when
creating a CDB for READ or WRITE commands. The calculation involves
division and modulus operations, which will cause a crash if either of
these values is 0. While this never happens with a genuine device, it
could happen with a flawed or subversive emulation, as reported by the
syzbot fuzzer.
Protect against this possibility by refusing to bind to the device if
either the ATA_ID_HEADS or ATA_ID_SECTORS value in the device&apos;s ID
information is 0. This requires isd200_Initialization() to return a
negative error code when initialization fails; currently it always
returns 0 (even when there is an error).(CVE-2024-27059)
In the Linux kernel, the following vulnerability has been resolved:
media: ttpci: fix two memleaks in budget_av_attach
When saa7146_register_device and saa7146_vv_init fails, budget_av_attach
should free the resources it allocates, like the error-handling of
ttpci_budget_init does. Besides, there are two fixme comment refers to
such deallocations.(CVE-2024-27073)
In the Linux kernel, the following vulnerability has been resolved:
media: dvb-frontends: avoid stack overflow warnings with clang
A previous patch worked around a KASAN issue in stv0367, now a similar
problem showed up with clang:
drivers/media/dvb-frontends/stv0367.c:1222:12: error: stack frame size (3624) exceeds limit (2048) in &apos;stv0367ter_set_frontend&apos; [-Werror,-Wframe-larger-than]
1214 | static int stv0367ter_set_frontend(struct dvb_frontend *fe)
Rework the stv0367_writereg() function to be simpler and mark both
register access functions as noinline_for_stack so the temporary
i2c_msg structures do not get duplicated on the stack when KASAN_STACK
is enabled.(CVE-2024-27075)
In the Linux kernel, the following vulnerability has been resolved:
pstore: inode: Only d_invalidate() is needed
Unloading a modular pstore backend with records in pstorefs would
trigger the dput() double-drop warning:
WARNING: CPU: 0 PID: 2569 at fs/dcache.c:762 dput.part.0+0x3f3/0x410
Using the combo of d_drop()/dput() (as mentioned in
Documentation/filesystems/vfs.rst) isn&apos;t the right approach here, and
leads to the reference counting problem seen above. Use d_invalidate()
and update the code to not bother checking for error codes that can
never happen.
---(CVE-2024-27389)
In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Fixed overflow check in mi_enum_attr()(CVE-2024-27407)
In the Linux kernel, the following vulnerability has been resolved:
netrom: Fix data-races around sysctl_net_busy_read
We need to protect the reader reading the sysctl value because the
value can be changed concurrently.(CVE-2024-27419)
Rejected reason: This CVE ID has been rejected or withdrawn by its CVE Numbering Authority.(CVE-2024-27426)
Rejected reason: This CVE ID has been rejected or withdrawn by its CVE Numbering Authority.(CVE-2024-27427)
In the Linux kernel, the following vulnerability has been resolved:
KVM: SVM: Flush pages under kvm-&gt;lock to fix UAF in svm_register_enc_region()
Do the cache flush of converted pages in svm_register_enc_region() before
dropping kvm-&gt;lock to fix use-after-free issues where region and/or its
array of pages could be freed by a different task, e.g. if userspace has
__unregister_enc_region_locked() already queued up for the region.
Note, the &quot;obvious&quot; alternative of using local variables doesn&apos;t fully
resolve the bug, as region-&gt;pages is also dynamically allocated. I.e. the
region structure itself would be fine, but region-&gt;pages could be freed.
Flushing multiple pages under kvm-&gt;lock is unfortunate, but the entire
flow is a rare slow path, and the manual flush is only needed on CPUs that
lack coherency for encrypted memory.(CVE-2024-35791)
In the Linux kernel, the following vulnerability has been resolved:
x86/fpu: Keep xfd_state in sync with MSR_IA32_XFD
Commit 672365477ae8 (&quot;x86/fpu: Update XFD state where required&quot;) and
commit 8bf26758ca96 (&quot;x86/fpu: Add XFD state to fpstate&quot;) introduced a
per CPU variable xfd_state to keep the MSR_IA32_XFD value cached, in
order to avoid unnecessary writes to the MSR.
On CPU hotplug MSR_IA32_XFD is reset to the init_fpstate.xfd, which
wipes out any stale state. But the per CPU cached xfd value is not
reset, which brings them out of sync.
As a consequence a subsequent xfd_update_state() might fail to update
the MSR which in turn can result in XRSTOR raising a #NM in kernel
space, which crashes the kernel.
To fix this, introduce xfd_set_state() to write xfd_state together
with MSR_IA32_XFD, and use it in all places that set MSR_IA32_XFD.(CVE-2024-35801)
In the Linux kernel, the following vulnerability has been resolved:
dm snapshot: fix lockup in dm_exception_table_exit
There was reported lockup when we exit a snapshot with many exceptions.
Fix this by adding &quot;cond_resched&quot; to the loop that frees the exceptions.(CVE-2024-35805)
In the Linux kernel, the following vulnerability has been resolved:
soc: fsl: qbman: Always disable interrupts when taking cgr_lock
smp_call_function_single disables IRQs when executing the callback. To
prevent deadlocks, we must disable IRQs when taking cgr_lock elsewhere.
This is already done by qman_update_cgr and qman_delete_cgr; fix the
other lockers.(CVE-2024-35806)
In the Linux kernel, the following vulnerability has been resolved:
LoongArch: Define the __io_aw() hook as mmiowb()
Commit fb24ea52f78e0d595852e (&quot;drivers: Remove explicit invocations of
mmiowb()&quot;) remove all mmiowb() in drivers, but it says:
&quot;NOTE: mmiowb() has only ever guaranteed ordering in conjunction with
spin_unlock(). However, pairing each mmiowb() removal in this patch with
the corresponding call to spin_unlock() is not at all trivial, so there
is a small chance that this change may regress any drivers incorrectly
relying on mmiowb() to order MMIO writes between CPUs using lock-free
synchronisation.&quot;
The mmio in radeon_ring_commit() is protected by a mutex rather than a
spinlock, but in the mutex fastpath it behaves similar to spinlock. We
can add mmiowb() calls in the radeon driver but the maintainer says he
doesn&apos;t like such a workaround, and radeon is not the only example of
mutex protected mmio.
So we should extend the mmiowb tracking system from spinlock to mutex,
and maybe other locking primitives. This is not easy and error prone, so
we solve it in the architectural code, by simply defining the __io_aw()
hook as mmiowb(). And we no longer need to override queued_spin_unlock()
so use the generic definition.
Without this, we get such an error when run &apos;glxgears&apos; on weak ordering
architectures such as LoongArch:
radeon 0000:04:00.0: ring 0 stalled for more than 10324msec
radeon 0000:04:00.0: ring 3 stalled for more than 10240msec
radeon 0000:04:00.0: GPU lockup (current fence id 0x000000000001f412 last fence id 0x000000000001f414 on ring 3)
radeon 0000:04:00.0: GPU lockup (current fence id 0x000000000000f940 last fence id 0x000000000000f941 on ring 0)
radeon 0000:04:00.0: scheduling IB failed (-35).
[drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn&apos;t update BO_VA (-35)
radeon 0000:04:00.0: scheduling IB failed (-35).
[drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn&apos;t update BO_VA (-35)
radeon 0000:04:00.0: scheduling IB failed (-35).
[drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn&apos;t update BO_VA (-35)
radeon 0000:04:00.0: scheduling IB failed (-35).
[drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn&apos;t update BO_VA (-35)
radeon 0000:04:00.0: scheduling IB failed (-35).
[drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn&apos;t update BO_VA (-35)
radeon 0000:04:00.0: scheduling IB failed (-35).
[drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn&apos;t update BO_VA (-35)
radeon 0000:04:00.0: scheduling IB failed (-35).
[drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn&apos;t update BO_VA (-35)(CVE-2024-35818)
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: fix a double-free in arfs_create_groups
When `in` allocated by kvzalloc fails, arfs_create_groups will free
ft-&gt;g and return an error. However, arfs_create_table, the only caller of
arfs_create_groups, will hold this error and call to
mlx5e_destroy_flow_table, in which the ft-&gt;g will be freed again.(CVE-2024-35835)
In the Linux kernel, the following vulnerability has been resolved:
f2fs: compress: fix reserve_cblocks counting error when out of space
When a file only needs one direct_node, performing the following
operations will cause the file to be unrepairable:
unisoc # ./f2fs_io compress test.apk
unisoc #df -h | grep dm-48
/dev/block/dm-48 112G 112G 1.2M 100% /data
unisoc # ./f2fs_io release_cblocks test.apk
924
unisoc # df -h | grep dm-48
/dev/block/dm-48 112G 112G 4.8M 100% /data
unisoc # dd if=/dev/random of=file4 bs=1M count=3
3145728 bytes (3.0 M) copied, 0.025 s, 120 M/s
unisoc # df -h | grep dm-48
/dev/block/dm-48 112G 112G 1.8M 100% /data
unisoc # ./f2fs_io reserve_cblocks test.apk
F2FS_IOC_RESERVE_COMPRESS_BLOCKS failed: No space left on device
adb reboot
unisoc # df -h | grep dm-48
/dev/block/dm-48 112G 112G 11M 100% /data
unisoc # ./f2fs_io reserve_cblocks test.apk
0
This is because the file has only one direct_node. After returning
to -ENOSPC, reserved_blocks += ret will not be executed. As a result,
the reserved_blocks at this time is still 0, which is not the real
number of reserved blocks. Therefore, fsck cannot be set to repair
the file.
After this patch, the fsck flag will be set to fix this problem.
unisoc # df -h | grep dm-48
/dev/block/dm-48 112G 112G 1.8M 100% /data
unisoc # ./f2fs_io reserve_cblocks test.apk
F2FS_IOC_RESERVE_COMPRESS_BLOCKS failed: No space left on device
adb reboot then fsck will be executed
unisoc # df -h | grep dm-48
/dev/block/dm-48 112G 112G 11M 100% /data
unisoc # ./f2fs_io reserve_cblocks test.apk
924(CVE-2024-35844)
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: Fix potential data-race in __nft_flowtable_type_get()
nft_unregister_flowtable_type() within nf_flow_inet_module_exit() can
concurrent with __nft_flowtable_type_get() within nf_tables_newflowtable().
And thhere is not any protection when iterate over nf_tables_flowtables
list in __nft_flowtable_type_get(). Therefore, there is pertential
data-race of nf_tables_flowtables list entry.
Use list_for_each_entry_rcu() to iterate over nf_tables_flowtables list
in __nft_flowtable_type_get(), and use rcu_read_lock() in the caller
nft_flowtable_type_get() to protect the entire type query process.(CVE-2024-35898)
In the Linux kernel, the following vulnerability has been resolved:
fbmon: prevent division by zero in fb_videomode_from_videomode()
The expression htotal * vtotal can have a zero value on
overflow. It is necessary to prevent division by zero like in
fb_var_to_videomode().
Found by Linux Verification Center (linuxtesting.org) with Svace.(CVE-2024-35922)
In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Fix possible memory leak in lpfc_rcv_padisc()
The call to lpfc_sli4_resume_rpi() in lpfc_rcv_padisc() may return an
unsuccessful status. In such cases, the elsiocb is not issued, the
completion is not called, and thus the elsiocb resource is leaked.
Check return value after calling lpfc_sli4_resume_rpi() and conditionally
release the elsiocb resource.(CVE-2024-35930)
In the Linux kernel, the following vulnerability has been resolved:
btrfs: handle chunk tree lookup error in btrfs_relocate_sys_chunks()
The unhandled case in btrfs_relocate_sys_chunks() loop is a corruption,
as it could be caused only by two impossible conditions:
- at first the search key is set up to look for a chunk tree item, with
offset -1, this is an inexact search and the key-&gt;offset will contain
the correct offset upon a successful search, a valid chunk tree item
cannot have an offset -1
- after first successful search, the found_key corresponds to a chunk
item, the offset is decremented by 1 before the next loop, it&apos;s
impossible to find a chunk item there due to alignment and size
constraints(CVE-2024-35936)
In the Linux kernel, the following vulnerability has been resolved:
pstore/zone: Add a null pointer check to the psz_kmsg_read
kasprintf() returns a pointer to dynamically allocated memory
which can be NULL upon failure. Ensure the allocation was successful
by checking the pointer validity.(CVE-2024-35940)
In the Linux kernel, the following vulnerability has been resolved:
xsk: validate user input for XDP_{UMEM|COMPLETION}_FILL_RING
syzbot reported an illegal copy in xsk_setsockopt() [1]
Make sure to validate setsockopt() @optlen parameter.
[1]
BUG: KASAN: slab-out-of-bounds in copy_from_sockptr_offset include/linux/sockptr.h:49 [inline]
BUG: KASAN: slab-out-of-bounds in copy_from_sockptr include/linux/sockptr.h:55 [inline]
BUG: KASAN: slab-out-of-bounds in xsk_setsockopt+0x909/0xa40 net/xdp/xsk.c:1420
Read of size 4 at addr ffff888028c6cde3 by task syz-executor.0/7549
CPU: 0 PID: 7549 Comm: syz-executor.0 Not tainted 6.8.0-syzkaller-08951-gfe46a7dd189e #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024
Call Trace:
&lt;TASK&gt;
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:114
print_address_description mm/kasan/report.c:377 [inline]
print_report+0x169/0x550 mm/kasan/report.c:488
kasan_report+0x143/0x180 mm/kasan/report.c:601
copy_from_sockptr_offset include/linux/sockptr.h:49 [inline]
copy_from_sockptr include/linux/sockptr.h:55 [inline]
xsk_setsockopt+0x909/0xa40 net/xdp/xsk.c:1420
do_sock_setsockopt+0x3af/0x720 net/socket.c:2311
__sys_setsockopt+0x1ae/0x250 net/socket.c:2334
__do_sys_setsockopt net/socket.c:2343 [inline]
__se_sys_setsockopt net/socket.c:2340 [inline]
__x64_sys_setsockopt+0xb5/0xd0 net/socket.c:2340
do_syscall_64+0xfb/0x240
entry_SYSCALL_64_after_hwframe+0x6d/0x75
RIP: 0033:0x7fb40587de69
Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 e1 20 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 &lt;48&gt; 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007fb40665a0c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000036
RAX: ffffffffffffffda RBX: 00007fb4059abf80 RCX: 00007fb40587de69
RDX: 0000000000000005 RSI: 000000000000011b RDI: 0000000000000006
RBP: 00007fb4058ca47a R08: 0000000000000002 R09: 0000000000000000
R10: 0000000020001980 R11: 0000000000000246 R12: 0000000000000000
R13: 000000000000000b R14: 00007fb4059abf80 R15: 00007fff57ee4d08
&lt;/TASK&gt;
Allocated by task 7549:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:370 [inline]
__kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:387
kasan_kmalloc include/linux/kasan.h:211 [inline]
__do_kmalloc_node mm/slub.c:3966 [inline]
__kmalloc+0x233/0x4a0 mm/slub.c:3979
kmalloc include/linux/slab.h:632 [inline]
__cgroup_bpf_run_filter_setsockopt+0xd2f/0x1040 kernel/bpf/cgroup.c:1869
do_sock_setsockopt+0x6b4/0x720 net/socket.c:2293
__sys_setsockopt+0x1ae/0x250 net/socket.c:2334
__do_sys_setsockopt net/socket.c:2343 [inline]
__se_sys_setsockopt net/socket.c:2340 [inline]
__x64_sys_setsockopt+0xb5/0xd0 net/socket.c:2340
do_syscall_64+0xfb/0x240
entry_SYSCALL_64_after_hwframe+0x6d/0x75
The buggy address belongs to the object at ffff888028c6cde0
which belongs to the cache kmalloc-8 of size 8
The buggy address is located 1 bytes to the right of
allocated 2-byte region [ffff888028c6cde0, ffff888028c6cde2)
The buggy address belongs to the physical page:
page:ffffea0000a31b00 refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888028c6c9c0 pfn:0x28c6c
anon flags: 0xfff00000000800(slab|node=0|zone=1|lastcpupid=0x7ff)
page_type: 0xffffffff()
raw: 00fff00000000800 ffff888014c41280 0000000000000000 dead000000000001
raw: ffff888028c6c9c0 0000000080800057 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
page_owner tracks the page as allocated
page last allocated via order 0, migratetype Unmovable, gfp_mask 0x112cc0(GFP_USER|__GFP_NOWARN|__GFP_NORETRY), pid 6648, tgid 6644 (syz-executor.0), ts 133906047828, free_ts 133859922223
set_page_owner include/linux/page_owner.h:31 [inline]
post_alloc_hook+0x1ea/0x210 mm/page_alloc.c:1533
prep_new_page mm/page_alloc.c:
---truncated---(CVE-2024-35976)
In the Linux kernel, the following vulnerability has been resolved:
HID: i2c-hid: remove I2C_HID_READ_PENDING flag to prevent lock-up
The flag I2C_HID_READ_PENDING is used to serialize I2C operations.
However, this is not necessary, because I2C core already has its own
locking for that.
More importantly, this flag can cause a lock-up: if the flag is set in
i2c_hid_xfer() and an interrupt happens, the interrupt handler
(i2c_hid_irq) will check this flag and return immediately without doing
anything, then the interrupt handler will be invoked again in an
infinite loop.
Since interrupt handler is an RT task, it takes over the CPU and the
flag-clearing task never gets scheduled, thus we have a lock-up.
Delete this unnecessary flag.(CVE-2024-35997)
In the Linux kernel, the following vulnerability has been resolved:
mlxsw: spectrum_acl_tcam: Fix incorrect list API usage
Both the function that migrates all the chunks within a region and the
function that migrates all the entries within a chunk call
list_first_entry() on the respective lists without checking that the
lists are not empty. This is incorrect usage of the API, which leads to
the following warning [1].
Fix by returning if the lists are empty as there is nothing to migrate
in this case.
[1]
WARNING: CPU: 0 PID: 6437 at drivers/net/ethernet/mellanox/mlxsw/spectrum_acl_tcam.c:1266 mlxsw_sp_acl_tcam_vchunk_migrate_all+0x1f1/0&gt;
Modules linked in:
CPU: 0 PID: 6437 Comm: kworker/0:37 Not tainted 6.9.0-rc3-custom-00883-g94a65f079ef6 #39
Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019
Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work
RIP: 0010:mlxsw_sp_acl_tcam_vchunk_migrate_all+0x1f1/0x2c0
[...]
Call Trace:
&lt;TASK&gt;
mlxsw_sp_acl_tcam_vregion_rehash_work+0x6c/0x4a0
process_one_work+0x151/0x370
worker_thread+0x2cb/0x3e0
kthread+0xd0/0x100
ret_from_fork+0x34/0x50
ret_from_fork_asm+0x1a/0x30
&lt;/TASK&gt;(CVE-2024-36006)</Note>
<Note Title="Topic" Type="General" Ordinal="4" xml:lang="en">An update for kernel is now available for openEuler-22.03-LTS-SP2.
openEuler Security has rated this update as having a security impact of high. A Common Vunlnerability Scoring System(CVSS)base score,which gives a detailed severity rating, is available for each vulnerability from the CVElink(s) in the References section.</Note>
<Note Title="Severity" Type="General" Ordinal="5" xml:lang="en">High</Note>
<Note Title="Affected Component" Type="General" Ordinal="6" xml:lang="en">kernel</Note>
</DocumentNotes>
<DocumentReferences>
<Reference Type="Self">
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Reference>
<Reference Type="openEuler CVE">
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2021-47421</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2021-47455</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2022-48708</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52650</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52656</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52664</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52683</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52698</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52804</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52813</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52817</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52835</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52837</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52844</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52860</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52867</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52879</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26787</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26801</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26814</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26881</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26923</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26950</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26958</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26961</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26965</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26976</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26982</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26993</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-27000</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-27008</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-27045</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-27059</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-27073</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-27075</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-27389</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-27407</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-27419</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-27426</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-27427</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35791</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35801</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35805</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35806</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35818</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35835</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35844</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35898</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35922</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35930</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35936</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35940</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35976</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35997</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-36006</URL>
</Reference>
<Reference Type="Other">
<URL>https://nvd.nist.gov/vuln/detail/CVE-2021-47421</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2021-47455</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2022-48708</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2023-52650</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2023-52656</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2023-52664</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2023-52683</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2023-52698</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2023-52804</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2023-52813</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2023-52817</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2023-52835</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2023-52837</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2023-52844</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2023-52860</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2023-52867</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2023-52879</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26787</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26801</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26814</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26881</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26923</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26950</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26958</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26961</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26965</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26976</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26982</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26993</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-27000</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-27008</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-27045</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-27059</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-27073</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-27075</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-27389</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-27407</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-27419</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-27426</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-27427</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-35791</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-35801</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-35805</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-35806</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-35818</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-35835</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-35844</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-35898</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-35922</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-35930</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-35936</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-35940</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-35976</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-35997</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-36006</URL>
</Reference>
</DocumentReferences>
<ProductTree xmlns="http://www.icasi.org/CVRF/schema/prod/1.1">
<Branch Type="Product Name" Name="openEuler">
<FullProductName ProductID="openEuler-22.03-LTS-SP2" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP2">openEuler-22.03-LTS-SP2</FullProductName>
</Branch>
<Branch Type="Package Arch" Name="aarch64">
<FullProductName ProductID="kernel-debuginfo-5.10.0-153.56.0.134" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP2">kernel-debuginfo-5.10.0-153.56.0.134.oe2203sp2.aarch64.rpm</FullProductName>
<FullProductName ProductID="kernel-devel-5.10.0-153.56.0.134" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP2">kernel-devel-5.10.0-153.56.0.134.oe2203sp2.aarch64.rpm</FullProductName>
<FullProductName ProductID="kernel-tools-devel-5.10.0-153.56.0.134" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP2">kernel-tools-devel-5.10.0-153.56.0.134.oe2203sp2.aarch64.rpm</FullProductName>
<FullProductName ProductID="kernel-tools-debuginfo-5.10.0-153.56.0.134" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP2">kernel-tools-debuginfo-5.10.0-153.56.0.134.oe2203sp2.aarch64.rpm</FullProductName>
<FullProductName ProductID="kernel-tools-5.10.0-153.56.0.134" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP2">kernel-tools-5.10.0-153.56.0.134.oe2203sp2.aarch64.rpm</FullProductName>
<FullProductName ProductID="kernel-5.10.0-153.56.0.134" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP2">kernel-5.10.0-153.56.0.134.oe2203sp2.aarch64.rpm</FullProductName>
<FullProductName ProductID="kernel-headers-5.10.0-153.56.0.134" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP2">kernel-headers-5.10.0-153.56.0.134.oe2203sp2.aarch64.rpm</FullProductName>
<FullProductName ProductID="kernel-debugsource-5.10.0-153.56.0.134" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP2">kernel-debugsource-5.10.0-153.56.0.134.oe2203sp2.aarch64.rpm</FullProductName>
<FullProductName ProductID="python3-perf-5.10.0-153.56.0.134" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP2">python3-perf-5.10.0-153.56.0.134.oe2203sp2.aarch64.rpm</FullProductName>
<FullProductName ProductID="perf-debuginfo-5.10.0-153.56.0.134" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP2">perf-debuginfo-5.10.0-153.56.0.134.oe2203sp2.aarch64.rpm</FullProductName>
<FullProductName ProductID="python3-perf-debuginfo-5.10.0-153.56.0.134" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP2">python3-perf-debuginfo-5.10.0-153.56.0.134.oe2203sp2.aarch64.rpm</FullProductName>
<FullProductName ProductID="perf-5.10.0-153.56.0.134" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP2">perf-5.10.0-153.56.0.134.oe2203sp2.aarch64.rpm</FullProductName>
<FullProductName ProductID="kernel-source-5.10.0-153.56.0.134" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP2">kernel-source-5.10.0-153.56.0.134.oe2203sp2.aarch64.rpm</FullProductName>
</Branch>
<Branch Type="Package Arch" Name="src">
<FullProductName ProductID="kernel-5.10.0-153.56.0.134" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP2">kernel-5.10.0-153.56.0.134.oe2203sp2.src.rpm</FullProductName>
</Branch>
<Branch Type="Package Arch" Name="x86_64">
<FullProductName ProductID="perf-debuginfo-5.10.0-153.56.0.134" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP2">perf-debuginfo-5.10.0-153.56.0.134.oe2203sp2.x86_64.rpm</FullProductName>
<FullProductName ProductID="python3-perf-debuginfo-5.10.0-153.56.0.134" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP2">python3-perf-debuginfo-5.10.0-153.56.0.134.oe2203sp2.x86_64.rpm</FullProductName>
<FullProductName ProductID="kernel-tools-5.10.0-153.56.0.134" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP2">kernel-tools-5.10.0-153.56.0.134.oe2203sp2.x86_64.rpm</FullProductName>
<FullProductName ProductID="kernel-tools-debuginfo-5.10.0-153.56.0.134" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP2">kernel-tools-debuginfo-5.10.0-153.56.0.134.oe2203sp2.x86_64.rpm</FullProductName>
<FullProductName ProductID="kernel-devel-5.10.0-153.56.0.134" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP2">kernel-devel-5.10.0-153.56.0.134.oe2203sp2.x86_64.rpm</FullProductName>
<FullProductName ProductID="kernel-5.10.0-153.56.0.134" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP2">kernel-5.10.0-153.56.0.134.oe2203sp2.x86_64.rpm</FullProductName>
<FullProductName ProductID="kernel-debugsource-5.10.0-153.56.0.134" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP2">kernel-debugsource-5.10.0-153.56.0.134.oe2203sp2.x86_64.rpm</FullProductName>
<FullProductName ProductID="perf-5.10.0-153.56.0.134" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP2">perf-5.10.0-153.56.0.134.oe2203sp2.x86_64.rpm</FullProductName>
<FullProductName ProductID="kernel-headers-5.10.0-153.56.0.134" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP2">kernel-headers-5.10.0-153.56.0.134.oe2203sp2.x86_64.rpm</FullProductName>
<FullProductName ProductID="python3-perf-5.10.0-153.56.0.134" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP2">python3-perf-5.10.0-153.56.0.134.oe2203sp2.x86_64.rpm</FullProductName>
<FullProductName ProductID="kernel-debuginfo-5.10.0-153.56.0.134" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP2">kernel-debuginfo-5.10.0-153.56.0.134.oe2203sp2.x86_64.rpm</FullProductName>
<FullProductName ProductID="kernel-tools-devel-5.10.0-153.56.0.134" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP2">kernel-tools-devel-5.10.0-153.56.0.134.oe2203sp2.x86_64.rpm</FullProductName>
<FullProductName ProductID="kernel-source-5.10.0-153.56.0.134" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP2">kernel-source-5.10.0-153.56.0.134.oe2203sp2.x86_64.rpm</FullProductName>
</Branch>
</ProductTree>
<Vulnerability Ordinal="1" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: handle the case of pci_channel_io_frozen only in amdgpu_pci_resume
In current code, when a PCI error state pci_channel_io_normal is detectd,
it will report PCI_ERS_RESULT_CAN_RECOVER status to PCI driver, and PCI
driver will continue the execution of PCI resume callback report_resume by
pci_walk_bridge, and the callback will go into amdgpu_pci_resume
finally, where write lock is releasd unconditionally without acquiring
such lock first. In this case, a deadlock will happen when other threads
start to acquire the read lock.
To fix this, add a member in amdgpu_device strucutre to cache
pci_channel_state, and only continue the execution in amdgpu_pci_resume
when it&apos;s pci_channel_io_frozen.</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2021-47421</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="2" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="2" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
ptp: Fix possible memory leak in ptp_clock_register()
I got memory leak as follows when doing fault injection test:
unreferenced object 0xffff88800906c618 (size 8):
comm &quot;i2c-idt82p33931&quot;, pid 4421, jiffies 4294948083 (age 13.188s)
hex dump (first 8 bytes):
70 74 70 30 00 00 00 00 ptp0....
backtrace:
[&lt;00000000312ed458&gt;] __kmalloc_track_caller+0x19f/0x3a0
[&lt;0000000079f6e2ff&gt;] kvasprintf+0xb5/0x150
[&lt;0000000026aae54f&gt;] kvasprintf_const+0x60/0x190
[&lt;00000000f323a5f7&gt;] kobject_set_name_vargs+0x56/0x150
[&lt;000000004e35abdd&gt;] dev_set_name+0xc0/0x100
[&lt;00000000f20cfe25&gt;] ptp_clock_register+0x9f4/0xd30 [ptp]
[&lt;000000008bb9f0de&gt;] idt82p33_probe.cold+0x8b6/0x1561 [ptp_idt82p33]
When posix_clock_register() returns an error, the name allocated
in dev_set_name() will be leaked, the put_device() should be used
to give up the device reference, then the name will be freed in
kobject_cleanup() and other memory will be freed in ptp_clock_release().</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2021-47455</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="3" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="3" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
pinctrl: single: fix potential NULL dereference
Added checking of pointer &quot;function&quot; in pcs_set_mux().
pinmux_generic_get_function() can return NULL and the pointer
&quot;function&quot; was dereferenced without checking against NULL.
Found by Linux Verification Center (linuxtesting.org) with SVACE.</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2022-48708</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Low</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>0.0</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="4" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="4" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
drm/tegra: dsi: Add missing check for of_find_device_by_node
Add check for the return value of of_find_device_by_node() and return
the error if it fails in order to avoid NULL pointer dereference.</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2023-52650</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>4.0</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="5" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="5" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
io_uring: drop any code related to SCM_RIGHTS
This is dead code after we dropped support for passing io_uring fds
over SCM_RIGHTS, get rid of it.</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2023-52656</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="6" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="6" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
net: atlantic: eliminate double free in error handling logic
Driver has a logic leak in ring data allocation/free,
where aq_ring_free could be called multiple times on same ring,
if system is under stress and got memory allocation error.
Ring pointer was used as an indicator of failure, but this is
not correct since only ring data is allocated/deallocated.
Ring itself is an array member.
Changing ring allocation functions to return error code directly.
This simplifies error handling and eliminates aq_ring_free
on higher layer.</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2023-52664</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="7" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="7" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
ACPI: LPIT: Avoid u32 multiplication overflow
In lpit_update_residency() there is a possibility of overflow
in multiplication, if tsc_khz is large enough (&gt; UINT_MAX/1000).
Change multiplication to mul_u32_u32().
Found by Linux Verification Center (linuxtesting.org) with SVACE.</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2023-52683</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="8" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="8" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
calipso: fix memory leak in netlbl_calipso_add_pass()
If IPv6 support is disabled at boot (ipv6.disable=1),
the calipso_init() -&gt; netlbl_calipso_ops_register() function isn&apos;t called,
and the netlbl_calipso_ops_get() function always returns NULL.
In this case, the netlbl_calipso_add_pass() function allocates memory
for the doi_def variable but doesn&apos;t free it with the calipso_doi_free().
BUG: memory leak
unreferenced object 0xffff888011d68180 (size 64):
comm &quot;syz-executor.1&quot;, pid 10746, jiffies 4295410986 (age 17.928s)
hex dump (first 32 bytes):
00 00 00 00 02 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[&lt;...&gt;] kmalloc include/linux/slab.h:552 [inline]
[&lt;...&gt;] netlbl_calipso_add_pass net/netlabel/netlabel_calipso.c:76 [inline]
[&lt;...&gt;] netlbl_calipso_add+0x22e/0x4f0 net/netlabel/netlabel_calipso.c:111
[&lt;...&gt;] genl_family_rcv_msg_doit+0x22f/0x330 net/netlink/genetlink.c:739
[&lt;...&gt;] genl_family_rcv_msg net/netlink/genetlink.c:783 [inline]
[&lt;...&gt;] genl_rcv_msg+0x341/0x5a0 net/netlink/genetlink.c:800
[&lt;...&gt;] netlink_rcv_skb+0x14d/0x440 net/netlink/af_netlink.c:2515
[&lt;...&gt;] genl_rcv+0x29/0x40 net/netlink/genetlink.c:811
[&lt;...&gt;] netlink_unicast_kernel net/netlink/af_netlink.c:1313 [inline]
[&lt;...&gt;] netlink_unicast+0x54b/0x800 net/netlink/af_netlink.c:1339
[&lt;...&gt;] netlink_sendmsg+0x90a/0xdf0 net/netlink/af_netlink.c:1934
[&lt;...&gt;] sock_sendmsg_nosec net/socket.c:651 [inline]
[&lt;...&gt;] sock_sendmsg+0x157/0x190 net/socket.c:671
[&lt;...&gt;] ____sys_sendmsg+0x712/0x870 net/socket.c:2342
[&lt;...&gt;] ___sys_sendmsg+0xf8/0x170 net/socket.c:2396
[&lt;...&gt;] __sys_sendmsg+0xea/0x1b0 net/socket.c:2429
[&lt;...&gt;] do_syscall_64+0x30/0x40 arch/x86/entry/common.c:46
[&lt;...&gt;] entry_SYSCALL_64_after_hwframe+0x61/0xc6
Found by InfoTeCS on behalf of Linux Verification Center
(linuxtesting.org) with Syzkaller
[PM: merged via the LSM tree at Jakub Kicinski request]</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2023-52698</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="9" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="9" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
fs/jfs: Add validity check for db_maxag and db_agpref
Both db_maxag and db_agpref are used as the index of the
db_agfree array, but there is currently no validity check for
db_maxag and db_agpref, which can lead to errors.
The following is related bug reported by Syzbot:
UBSAN: array-index-out-of-bounds in fs/jfs/jfs_dmap.c:639:20
index 7936 is out of range for type &apos;atomic_t[128]&apos;
Add checking that the values of db_maxag and db_agpref are valid
indexes for the db_agfree array.</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2023-52804</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="10" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="10" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
crypto: pcrypt - Fix hungtask for PADATA_RESET
We found a hungtask bug in test_aead_vec_cfg as follows:
INFO: task cryptomgr_test:391009 blocked for more than 120 seconds.
&quot;echo 0 &gt; /proc/sys/kernel/hung_task_timeout_secs&quot; disables this message.
Call trace:
__switch_to+0x98/0xe0
__schedule+0x6c4/0xf40
schedule+0xd8/0x1b4
schedule_timeout+0x474/0x560
wait_for_common+0x368/0x4e0
wait_for_completion+0x20/0x30
wait_for_completion+0x20/0x30
test_aead_vec_cfg+0xab4/0xd50
test_aead+0x144/0x1f0
alg_test_aead+0xd8/0x1e0
alg_test+0x634/0x890
cryptomgr_test+0x40/0x70
kthread+0x1e0/0x220
ret_from_fork+0x10/0x18
Kernel panic - not syncing: hung_task: blocked tasks
For padata_do_parallel, when the return err is 0 or -EBUSY, it will call
wait_for_completion(&amp;wait-&gt;completion) in test_aead_vec_cfg. In normal
case, aead_request_complete() will be called in pcrypt_aead_serial and the
return err is 0 for padata_do_parallel. But, when pinst-&gt;flags is
PADATA_RESET, the return err is -EBUSY for padata_do_parallel, and it
won&apos;t call aead_request_complete(). Therefore, test_aead_vec_cfg will
hung at wait_for_completion(&amp;wait-&gt;completion), which will cause
hungtask.
The problem comes as following:
(padata_do_parallel) |
rcu_read_lock_bh(); |
err = -EINVAL; | (padata_replace)
| pinst-&gt;flags |= PADATA_RESET;
err = -EBUSY |
if (pinst-&gt;flags &amp; PADATA_RESET) |
rcu_read_unlock_bh() |
return err
In order to resolve the problem, we replace the return err -EBUSY with
-EAGAIN, which means parallel_data is changing, and the caller should call
it again.
v3:
remove retry and just change the return err.
v2:
introduce padata_try_do_parallel() in pcrypt_aead_encrypt and
pcrypt_aead_decrypt to solve the hungtask.</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2023-52813</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="11" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="11" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:drm/amdgpu: Fix a null pointer access when the smc_rreg pointer is NULLIn certain types of chips, such as VEGA20, reading the amdgpu_regs_smc file could result in an abnormal null pointer access when the smc_rreg pointer is NULL. Below are the steps to reproduce this issue and the corresponding exception log:1. Navigate to the directory: /sys/kernel/debug/dri/02. Execute command: cat amdgpu_regs_smc3. Exception Log::[4005007.702554] BUG: kernel NULL pointer dereference, address: 0000000000000000[4005007.702562] #PF: supervisor instruction fetch in kernel mode[4005007.702567] #PF: error_code(0x0010) - not-present page[4005007.702570] PGD 0 P4D 0[4005007.702576] Oops: 0010 [#1] SMP NOPTI[4005007.702581] CPU: 4 PID: 62563 Comm: cat Tainted: G OE 5.15.0-43-generic #46-Ubunt u[4005007.702590] RIP: 0010:0x0[4005007.702598] Code: Unable to access opcode bytes at RIP 0xffffffffffffffd6.[4005007.702600] RSP: 0018:ffffa82b46d27da0 EFLAGS: 00010206[4005007.702605] RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffa82b46d27e68[4005007.702609] RDX: 0000000000000001 RSI: 0000000000000000 RDI: ffff9940656e0000[4005007.702612] RBP: ffffa82b46d27dd8 R08: 0000000000000000 R09: ffff994060c07980[4005007.702615] R10: 0000000000020000 R11: 0000000000000000 R12: 00007f5e06753000[4005007.702618] R13: ffff9940656e0000 R14: ffffa82b46d27e68 R15: 00007f5e06753000[4005007.702622] FS: 00007f5e0755b740(0000) GS:ffff99479d300000(0000) knlGS:0000000000000000[4005007.702626] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033[4005007.702629] CR2: ffffffffffffffd6 CR3: 00000003253fc000 CR4: 00000000003506e0[4005007.702633] Call Trace:[4005007.702636] &lt;TASK&gt;[4005007.702640] amdgpu_debugfs_regs_smc_read+0xb0/0x120 [amdgpu][4005007.703002] full_proxy_read+0x5c/0x80[4005007.703011] vfs_read+0x9f/0x1a0[4005007.703019] ksys_read+0x67/0xe0[4005007.703023] __x64_sys_read+0x19/0x20[4005007.703028] do_syscall_64+0x5c/0xc0[4005007.703034] ? do_user_addr_fault+0x1e3/0x670[4005007.703040] ? exit_to_user_mode_prepare+0x37/0xb0[4005007.703047] ? irqentry_exit_to_user_mode+0x9/0x20[4005007.703052] ? irqentry_exit+0x19/0x30[4005007.703057] ? exc_page_fault+0x89/0x160[4005007.703062] ? asm_exc_page_fault+0x8/0x30[4005007.703068] entry_SYSCALL_64_after_hwframe+0x44/0xae[4005007.703075] RIP: 0033:0x7f5e07672992[4005007.703079] Code: c0 e9 b2 fe ff ff 50 48 8d 3d fa b2 0c 00 e8 c5 1d 02 00 0f 1f 44 00 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 0f 05 &lt;48&gt; 3d 00 f0 ff ff 77 56 c3 0f 1f 44 00 00 48 83 e c 28 48 89 54 24[4005007.703083] RSP: 002b:00007ffe03097898 EFLAGS: 00000246 ORIG_RAX: 0000000000000000[4005007.703088] RAX: ffffffffffffffda RBX: 0000000000020000 RCX: 00007f5e07672992[4005007.703091] RDX: 0000000000020000 RSI: 00007f5e06753000 RDI: 0000000000000003[4005007.703094] RBP: 00007f5e06753000 R08: 00007f5e06752010 R09: 00007f5e06752010[4005007.703096] R10: 0000000000000022 R11: 0000000000000246 R12: 0000000000022000[4005007.703099] R13: 0000000000000003 R14: 0000000000020000 R15: 0000000000020000[4005007.703105] &lt;/TASK&gt;[4005007.703107] Modules linked in: nf_tables libcrc32c nfnetlink algif_hash af_alg binfmt_misc nls_ iso8859_1 ipmi_ssif ast intel_rapl_msr intel_rapl_common drm_vram_helper drm_ttm_helper amd64_edac t tm edac_mce_amd kvm_amd ccp mac_hid k10temp kvm acpi_ipmi ipmi_si rapl sch_fq_codel ipmi_devintf ipm i_msghandler msr parport_pc ppdev lp parport mtd pstore_blk efi_pstore ramoops pstore_zone reed_solo mon ip_tables x_tables autofs4 ib_uverbs ib_core amdgpu(OE) amddrm_ttm_helper(OE) amdttm(OE) iommu_v 2 amd_sched(OE) amdkcl(OE) drm_kms_helper syscopyarea sysfillrect sysimgblt fb_sys_fops cec rc_core drm igb ahci xhci_pci libahci i2c_piix4 i2c_algo_bit xhci_pci_renesas dca[4005007.703184] CR2: 0000000000000000[4005007.703188] ---[ en---truncated---</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2023-52817</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="12" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="12" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
perf/core: Bail out early if the request AUX area is out of bound
When perf-record with a large AUX area, e.g 4GB, it fails with:
#perf record -C 0 -m ,4G -e arm_spe_0// -- sleep 1
failed to mmap with 12 (Cannot allocate memory)
and it reveals a WARNING with __alloc_pages():
------------[ cut here ]------------
WARNING: CPU: 44 PID: 17573 at mm/page_alloc.c:5568 __alloc_pages+0x1ec/0x248
Call trace:
__alloc_pages+0x1ec/0x248
__kmalloc_large_node+0xc0/0x1f8
__kmalloc_node+0x134/0x1e8
rb_alloc_aux+0xe0/0x298
perf_mmap+0x440/0x660
mmap_region+0x308/0x8a8
do_mmap+0x3c0/0x528
vm_mmap_pgoff+0xf4/0x1b8
ksys_mmap_pgoff+0x18c/0x218
__arm64_sys_mmap+0x38/0x58
invoke_syscall+0x50/0x128
el0_svc_common.constprop.0+0x58/0x188
do_el0_svc+0x34/0x50
el0_svc+0x34/0x108
el0t_64_sync_handler+0xb8/0xc0
el0t_64_sync+0x1a4/0x1a8
&apos;rb-&gt;aux_pages&apos; allocated by kcalloc() is a pointer array which is used to
maintains AUX trace pages. The allocated page for this array is physically
contiguous (and virtually contiguous) with an order of 0..MAX_ORDER. If the
size of pointer array crosses the limitation set by MAX_ORDER, it reveals a
WARNING.
So bail out early with -ENOMEM if the request AUX area is out of bound,
e.g.:
#perf record -C 0 -m ,4G -e arm_spe_0// -- sleep 1
failed to mmap with 12 (Cannot allocate memory)</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2023-52835</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="13" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="13" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
nbd: fix uaf in nbd_open
Commit 4af5f2e03013 (&quot;nbd: use blk_mq_alloc_disk and
blk_cleanup_disk&quot;) cleans up disk by blk_cleanup_disk() and it won&apos;t set
disk-&gt;private_data as NULL as before. UAF may be triggered in nbd_open()
if someone tries to open nbd device right after nbd_put() since nbd has
been free in nbd_dev_remove().
Fix this by implementing -&gt;free_disk and free private data in it.</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2023-52837</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Low</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>0.0</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="14" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="14" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
media: vidtv: psi: Add check for kstrdup
Add check for the return value of kstrdup() and return the error
if it fails in order to avoid NULL pointer dereference.</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2023-52844</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="15" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="15" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
drivers/perf: hisi: use cpuhp_state_remove_instance_nocalls() for hisi_hns3_pmu uninit process
When tearing down a &apos;hisi_hns3&apos; PMU, we mistakenly run the CPU hotplug
callbacks after the device has been unregistered, leading to fireworks
when we try to execute empty function callbacks within the driver:
| Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
| CPU: 0 PID: 15 Comm: cpuhp/0 Tainted: G W O 5.12.0-rc4+ #1
| Hardware name: , BIOS KpxxxFPGA 1P B600 V143 04/22/2021
| pstate: 80400009 (Nzcv daif +PAN -UAO -TCO BTYPE=--)
| pc : perf_pmu_migrate_context+0x98/0x38c
| lr : perf_pmu_migrate_context+0x94/0x38c
|
| Call trace:
| perf_pmu_migrate_context+0x98/0x38c
| hisi_hns3_pmu_offline_cpu+0x104/0x12c [hisi_hns3_pmu]
Use cpuhp_state_remove_instance_nocalls() instead of
cpuhp_state_remove_instance() so that the notifiers don&apos;t execute after
the PMU device has been unregistered.
[will: Rewrote commit message]</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2023-52860</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="16" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="16" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
drm/radeon: possible buffer overflow
Buffer &apos;afmt_status&apos; of size 6 could overflow, since index &apos;afmt_idx&apos; is
checked after access.</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2023-52867</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="17" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="17" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
tracing: Have trace_event_file have ref counters
The following can crash the kernel:
# cd /sys/kernel/tracing
# echo &apos;p:sched schedule&apos; &gt; kprobe_events
# exec 5&gt;&gt;events/kprobes/sched/enable
# &gt; kprobe_events
# exec 5&gt;&amp;-
The above commands:
1. Change directory to the tracefs directory
2. Create a kprobe event (doesn&apos;t matter what one)
3. Open bash file descriptor 5 on the enable file of the kprobe event
4. Delete the kprobe event (removes the files too)
5. Close the bash file descriptor 5
The above causes a crash!
BUG: kernel NULL pointer dereference, address: 0000000000000028
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 6 PID: 877 Comm: bash Not tainted 6.5.0-rc4-test-00008-g2c6b6b1029d4-dirty #186
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
RIP: 0010:tracing_release_file_tr+0xc/0x50
What happens here is that the kprobe event creates a trace_event_file
&quot;file&quot; descriptor that represents the file in tracefs to the event. It
maintains state of the event (is it enabled for the given instance?).
Opening the &quot;enable&quot; file gets a reference to the event &quot;file&quot; descriptor
via the open file descriptor. When the kprobe event is deleted, the file is
also deleted from the tracefs system which also frees the event &quot;file&quot;
descriptor.
But as the tracefs file is still opened by user space, it will not be
totally removed until the final dput() is called on it. But this is not
true with the event &quot;file&quot; descriptor that is already freed. If the user
does a write to or simply closes the file descriptor it will reference the
event &quot;file&quot; descriptor that was just freed, causing a use-after-free bug.
To solve this, add a ref count to the event &quot;file&quot; descriptor as well as a
new flag called &quot;FREED&quot;. The &quot;file&quot; will not be freed until the last
reference is released. But the FREE flag will be set when the event is
removed to prevent any more modifications to that event from happening,
even if there&apos;s still a reference to the event &quot;file&quot; descriptor.</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2023-52879</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Low</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>0.0</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="18" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="18" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
mmc: mmci: stm32: fix DMA API overlapping mappings warning
Turning on CONFIG_DMA_API_DEBUG_SG results in the following warning:
DMA-API: mmci-pl18x 48220000.mmc: cacheline tracking EEXIST,
overlapping mappings aren&apos;t supported
WARNING: CPU: 1 PID: 51 at kernel/dma/debug.c:568
add_dma_entry+0x234/0x2f4
Modules linked in:
CPU: 1 PID: 51 Comm: kworker/1:2 Not tainted 6.1.28 #1
Hardware name: STMicroelectronics STM32MP257F-EV1 Evaluation Board (DT)
Workqueue: events_freezable mmc_rescan
Call trace:
add_dma_entry+0x234/0x2f4
debug_dma_map_sg+0x198/0x350
__dma_map_sg_attrs+0xa0/0x110
dma_map_sg_attrs+0x10/0x2c
sdmmc_idma_prep_data+0x80/0xc0
mmci_prep_data+0x38/0x84
mmci_start_data+0x108/0x2dc
mmci_request+0xe4/0x190
__mmc_start_request+0x68/0x140
mmc_start_request+0x94/0xc0
mmc_wait_for_req+0x70/0x100
mmc_send_tuning+0x108/0x1ac
sdmmc_execute_tuning+0x14c/0x210
mmc_execute_tuning+0x48/0xec
mmc_sd_init_uhs_card.part.0+0x208/0x464
mmc_sd_init_card+0x318/0x89c
mmc_attach_sd+0xe4/0x180
mmc_rescan+0x244/0x320
DMA API debug brings to light leaking dma-mappings as dma_map_sg and
dma_unmap_sg are not correctly balanced.
If an error occurs in mmci_cmd_irq function, only mmci_dma_error
function is called and as this API is not managed on stm32 variant,
dma_unmap_sg is never called in this error path.</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2024-26787</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="19" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="19" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Avoid potential use-after-free in hci_error_reset
While handling the HCI_EV_HARDWARE_ERROR event, if the underlying
BT controller is not responding, the GPIO reset mechanism would
free the hci_dev and lead to a use-after-free in hci_error_reset.
Here&apos;s the call trace observed on a ChromeOS device with Intel AX201:
queue_work_on+0x3e/0x6c
__hci_cmd_sync_sk+0x2ee/0x4c0 [bluetooth &lt;HASH:3b4a6&gt;]
? init_wait_entry+0x31/0x31
__hci_cmd_sync+0x16/0x20 [bluetooth &lt;HASH:3b4a 6&gt;]
hci_error_reset+0x4f/0xa4 [bluetooth &lt;HASH:3b4a 6&gt;]
process_one_work+0x1d8/0x33f
worker_thread+0x21b/0x373
kthread+0x13a/0x152
? pr_cont_work+0x54/0x54
? kthread_blkcg+0x31/0x31
ret_from_fork+0x1f/0x30
This patch holds the reference count on the hci_dev while processing
a HCI_EV_HARDWARE_ERROR event to avoid potential crash.</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2024-26801</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="20" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="20" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
vfio/fsl-mc: Block calling interrupt handler without trigger
The eventfd_ctx trigger pointer of the vfio_fsl_mc_irq object is
initially NULL and may become NULL if the user sets the trigger
eventfd to -1. The interrupt handler itself is guaranteed that
trigger is always valid between request_irq() and free_irq(), but
the loopback testing mechanisms to invoke the handler function
need to test the trigger. The triggering and setting ioctl paths
both make use of igate and are therefore mutually exclusive.
The vfio-fsl-mc driver does not make use of irqfds, nor does it
support any sort of masking operations, therefore unlike vfio-pci
and vfio-platform, the flow can remain essentially unchanged.</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2024-26814</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>4.4</BaseScore>
<Vector>AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="21" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="21" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:net: hns3: fix kernel crash when 1588 is received on HIP08 devicesThe HIP08 devices does not register the ptp devices, so thehdev-&gt;ptp is NULL, but the hardware can receive 1588 messages,and set the HNS3_RXD_TS_VLD_B bit, so, if match this case, theaccess of hdev-&gt;ptp-&gt;flags will cause a kernel crash:[ 5888.946472] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000018[ 5888.946475] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000018...[ 5889.266118] pc : hclge_ptp_get_rx_hwts+0x40/0x170 [hclge][ 5889.272612] lr : hclge_ptp_get_rx_hwts+0x34/0x170 [hclge][ 5889.279101] sp : ffff800012c3bc50[ 5889.283516] x29: ffff800012c3bc50 x28: ffff2040002be040[ 5889.289927] x27: ffff800009116484 x26: 0000000080007500[ 5889.296333] x25: 0000000000000000 x24: ffff204001c6f000[ 5889.302738] x23: ffff204144f53c00 x22: 0000000000000000[ 5889.309134] x21: 0000000000000000 x20: ffff204004220080[ 5889.315520] x19: ffff204144f53c00 x18: 0000000000000000[ 5889.321897] x17: 0000000000000000 x16: 0000000000000000[ 5889.328263] x15: 0000004000140ec8 x14: 0000000000000000[ 5889.334617] x13: 0000000000000000 x12: 00000000010011df[ 5889.340965] x11: bbfeff4d22000000 x10: 0000000000000000[ 5889.347303] x9 : ffff800009402124 x8 : 0200f78811dfbb4d[ 5889.353637] x7 : 2200000000191b01 x6 : ffff208002a7d480[ 5889.359959] x5 : 0000000000000000 x4 : 0000000000000000[ 5889.366271] x3 : 0000000000000000 x2 : 0000000000000000[ 5889.372567] x1 : 0000000000000000 x0 : ffff20400095c080[ 5889.378857] Call trace:[ 5889.382285] hclge_ptp_get_rx_hwts+0x40/0x170 [hclge][ 5889.388304] hns3_handle_bdinfo+0x324/0x410 [hns3][ 5889.394055] hns3_handle_rx_bd+0x60/0x150 [hns3][ 5889.399624] hns3_clean_rx_ring+0x84/0x170 [hns3][ 5889.405270] hns3_nic_common_poll+0xa8/0x220 [hns3][ 5889.411084] napi_poll+0xcc/0x264[ 5889.415329] net_rx_action+0xd4/0x21c[ 5889.419911] __do_softirq+0x130/0x358[ 5889.424484] irq_exit+0x134/0x154[ 5889.428700] __handle_domain_irq+0x88/0xf0[ 5889.433684] gic_handle_irq+0x78/0x2c0[ 5889.438319] el1_irq+0xb8/0x140[ 5889.442354] arch_cpu_idle+0x18/0x40[ 5889.446816] default_idle_call+0x5c/0x1c0[ 5889.451714] cpuidle_idle_call+0x174/0x1b0[ 5889.456692] do_idle+0xc8/0x160[ 5889.460717] cpu_startup_entry+0x30/0xfc[ 5889.465523] secondary_start_kernel+0x158/0x1ec[ 5889.470936] Code: 97ffab78 f9411c14 91408294 f9457284 (f9400c80)[ 5889.477950] SMP: stopping secondary CPUs[ 5890.514626] SMP: failed to stop secondary CPUs 0-69,71-95[ 5890.522951] Starting crashdump kernel...</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2024-26881</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="22" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="22" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
af_unix: Fix garbage collector racing against connect()
Garbage collector does not take into account the risk of embryo getting
enqueued during the garbage collection. If such embryo has a peer that
carries SCM_RIGHTS, two consecutive passes of scan_children() may see a
different set of children. Leading to an incorrectly elevated inflight
count, and then a dangling pointer within the gc_inflight_list.
sockets are AF_UNIX/SOCK_STREAM
S is an unconnected socket
L is a listening in-flight socket bound to addr, not in fdtable
V&apos;s fd will be passed via sendmsg(), gets inflight count bumped
connect(S, addr) sendmsg(S, [V]); close(V) __unix_gc()
---------------- ------------------------- -----------
NS = unix_create1()
skb1 = sock_wmalloc(NS)
L = unix_find_other(addr)
unix_state_lock(L)
unix_peer(S) = NS
// V count=1 inflight=0
NS = unix_peer(S)
skb2 = sock_alloc()
skb_queue_tail(NS, skb2[V])
// V became in-flight
// V count=2 inflight=1
close(V)
// V count=1 inflight=1
// GC candidate condition met
for u in gc_inflight_list:
if (total_refs == inflight_refs)
add u to gc_candidates
// gc_candidates={L, V}
for u in gc_candidates:
scan_children(u, dec_inflight)
// embryo (skb1) was not
// reachable from L yet, so V&apos;s
// inflight remains unchanged
__skb_queue_tail(L, skb1)
unix_state_unlock(L)
for u in gc_candidates:
if (u.inflight)
scan_children(u, inc_inflight_move_tail)
// V count=1 inflight=2 (!)
If there is a GC-candidate listening socket, lock/unlock its state. This
makes GC wait until the end of any ongoing connect() to that socket. After
flipping the lock, a possibly SCM-laden embryo is already enqueued. And if
there is another embryo coming, it can not possibly carry SCM_RIGHTS. At
this point, unix_inflight() can not happen because unix_gc_lock is already
taken. Inflight graph remains unaffected.</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2024-26923</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>High</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>7.0</BaseScore>
<Vector>AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="23" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="23" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
wireguard: netlink: access device through ctx instead of peer
The previous commit fixed a bug that led to a NULL peer-&gt;device being
dereferenced. It&apos;s actually easier and faster performance-wise to
instead get the device from ctx-&gt;wg. This semantically makes more sense
too, since ctx-&gt;wg-&gt;peer_allowedips.seq is compared with
ctx-&gt;allowedips_seq, basing them both in ctx. This also acts as a
defence in depth provision against freed peers.</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2024-26950</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="24" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="24" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
nfs: fix UAF in direct writes
In production we have been hitting the following warning consistently
------------[ cut here ]------------
refcount_t: underflow; use-after-free.
WARNING: CPU: 17 PID: 1800359 at lib/refcount.c:28 refcount_warn_saturate+0x9c/0xe0
Workqueue: nfsiod nfs_direct_write_schedule_work [nfs]
RIP: 0010:refcount_warn_saturate+0x9c/0xe0
PKRU: 55555554
Call Trace:
&lt;TASK&gt;
? __warn+0x9f/0x130
? refcount_warn_saturate+0x9c/0xe0
? report_bug+0xcc/0x150
? handle_bug+0x3d/0x70
? exc_invalid_op+0x16/0x40
? asm_exc_invalid_op+0x16/0x20
? refcount_warn_saturate+0x9c/0xe0
nfs_direct_write_schedule_work+0x237/0x250 [nfs]
process_one_work+0x12f/0x4a0
worker_thread+0x14e/0x3b0
? ZSTD_getCParams_internal+0x220/0x220
kthread+0xdc/0x120
? __btf_name_valid+0xa0/0xa0
ret_from_fork+0x1f/0x30
This is because we&apos;re completing the nfs_direct_request twice in a row.
The source of this is when we have our commit requests to submit, we
process them and send them off, and then in the completion path for the
commit requests we have
if (nfs_commit_end(cinfo.mds))
nfs_direct_write_complete(dreq);
However since we&apos;re submitting asynchronous requests we sometimes have
one that completes before we submit the next one, so we end up calling
complete on the nfs_direct_request twice.
The only other place we use nfs_generic_commit_list() is in
__nfs_commit_inode, which wraps this call in a
nfs_commit_begin();
nfs_commit_end();
Which is a common pattern for this style of completion handling, one
that is also repeated in the direct code with get_dreq()/put_dreq()
calls around where we process events as well as in the completion paths.
Fix this by using the same pattern for the commit requests.
Before with my 200 node rocksdb stress running this warning would pop
every 10ish minutes. With my patch the stress test has been running for
several hours without popping.</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2024-26958</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="25" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="25" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
mac802154: fix llsec key resources release in mac802154_llsec_key_del
mac802154_llsec_key_del() can free resources of a key directly without
following the RCU rules for waiting before the end of a grace period. This
may lead to use-after-free in case llsec_lookup_key() is traversing the
list of keys in parallel with a key deletion:
refcount_t: addition on 0; use-after-free.
WARNING: CPU: 4 PID: 16000 at lib/refcount.c:25 refcount_warn_saturate+0x162/0x2a0
Modules linked in:
CPU: 4 PID: 16000 Comm: wpan-ping Not tainted 6.7.0 #19
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
RIP: 0010:refcount_warn_saturate+0x162/0x2a0
Call Trace:
&lt;TASK&gt;
llsec_lookup_key.isra.0+0x890/0x9e0
mac802154_llsec_encrypt+0x30c/0x9c0
ieee802154_subif_start_xmit+0x24/0x1e0
dev_hard_start_xmit+0x13e/0x690
sch_direct_xmit+0x2ae/0xbc0
__dev_queue_xmit+0x11dd/0x3c20
dgram_sendmsg+0x90b/0xd60
__sys_sendto+0x466/0x4c0
__x64_sys_sendto+0xe0/0x1c0
do_syscall_64+0x45/0xf0
entry_SYSCALL_64_after_hwframe+0x6e/0x76
Also, ieee802154_llsec_key_entry structures are not freed by
mac802154_llsec_key_del():
unreferenced object 0xffff8880613b6980 (size 64):
comm &quot;iwpan&quot;, pid 2176, jiffies 4294761134 (age 60.475s)
hex dump (first 32 bytes):
78 0d 8f 18 80 88 ff ff 22 01 00 00 00 00 ad de x.......&quot;.......
00 00 00 00 00 00 00 00 03 00 cd ab 00 00 00 00 ................
backtrace:
[&lt;ffffffff81dcfa62&gt;] __kmem_cache_alloc_node+0x1e2/0x2d0
[&lt;ffffffff81c43865&gt;] kmalloc_trace+0x25/0xc0
[&lt;ffffffff88968b09&gt;] mac802154_llsec_key_add+0xac9/0xcf0
[&lt;ffffffff8896e41a&gt;] ieee802154_add_llsec_key+0x5a/0x80
[&lt;ffffffff8892adc6&gt;] nl802154_add_llsec_key+0x426/0x5b0
[&lt;ffffffff86ff293e&gt;] genl_family_rcv_msg_doit+0x1fe/0x2f0
[&lt;ffffffff86ff46d1&gt;] genl_rcv_msg+0x531/0x7d0
[&lt;ffffffff86fee7a9&gt;] netlink_rcv_skb+0x169/0x440
[&lt;ffffffff86ff1d88&gt;] genl_rcv+0x28/0x40
[&lt;ffffffff86fec15c&gt;] netlink_unicast+0x53c/0x820
[&lt;ffffffff86fecd8b&gt;] netlink_sendmsg+0x93b/0xe60
[&lt;ffffffff86b91b35&gt;] ____sys_sendmsg+0xac5/0xca0
[&lt;ffffffff86b9c3dd&gt;] ___sys_sendmsg+0x11d/0x1c0
[&lt;ffffffff86b9c65a&gt;] __sys_sendmsg+0xfa/0x1d0
[&lt;ffffffff88eadbf5&gt;] do_syscall_64+0x45/0xf0
[&lt;ffffffff890000ea&gt;] entry_SYSCALL_64_after_hwframe+0x6e/0x76
Handle the proper resource release in the RCU callback function
mac802154_llsec_key_del_rcu().
Note that if llsec_lookup_key() finds a key, it gets a refcount via
llsec_key_get() and locally copies key id from key_entry (which is a
list element). So it&apos;s safe to call llsec_key_put() and free the list
entry after the RCU grace period elapses.
Found by Linux Verification Center (linuxtesting.org).</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2024-26961</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="26" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="26" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
clk: qcom: mmcc-msm8974: fix terminating of frequency table arrays
The frequency table arrays are supposed to be terminated with an
empty element. Add such entry to the end of the arrays where it
is missing in order to avoid possible out-of-bound access when
the table is traversed by functions like qcom_find_freq() or
qcom_find_freq_floor().
Only compile tested.</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2024-26965</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="27" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="27" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
KVM: Always flush async #PF workqueue when vCPU is being destroyed
Always flush the per-vCPU async #PF workqueue when a vCPU is clearing its
completion queue, e.g. when a VM and all its vCPUs is being destroyed.
KVM must ensure that none of its workqueue callbacks is running when the
last reference to the KVM _module_ is put. Gifting a reference to the
associated VM prevents the workqueue callback from dereferencing freed
vCPU/VM memory, but does not prevent the KVM module from being unloaded
before the callback completes.
Drop the misguided VM refcount gifting, as calling kvm_put_kvm() from
async_pf_execute() if kvm_put_kvm() flushes the async #PF workqueue will
result in deadlock. async_pf_execute() can&apos;t return until kvm_put_kvm()
finishes, and kvm_put_kvm() can&apos;t return until async_pf_execute() finishes:
WARNING: CPU: 8 PID: 251 at virt/kvm/kvm_main.c:1435 kvm_put_kvm+0x2d/0x320 [kvm]
Modules linked in: vhost_net vhost vhost_iotlb tap kvm_intel kvm irqbypass
CPU: 8 PID: 251 Comm: kworker/8:1 Tainted: G W 6.6.0-rc1-e7af8d17224a-x86/gmem-vm #119
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
Workqueue: events async_pf_execute [kvm]
RIP: 0010:kvm_put_kvm+0x2d/0x320 [kvm]
Call Trace:
&lt;TASK&gt;
async_pf_execute+0x198/0x260 [kvm]
process_one_work+0x145/0x2d0
worker_thread+0x27e/0x3a0
kthread+0xba/0xe0
ret_from_fork+0x2d/0x50
ret_from_fork_asm+0x11/0x20
&lt;/TASK&gt;
---[ end trace 0000000000000000 ]---
INFO: task kworker/8:1:251 blocked for more than 120 seconds.
Tainted: G W 6.6.0-rc1-e7af8d17224a-x86/gmem-vm #119
&quot;echo 0 &gt; /proc/sys/kernel/hung_task_timeout_secs&quot; disables this message.
task:kworker/8:1 state:D stack:0 pid:251 ppid:2 flags:0x00004000
Workqueue: events async_pf_execute [kvm]
Call Trace:
&lt;TASK&gt;
__schedule+0x33f/0xa40
schedule+0x53/0xc0
schedule_timeout+0x12a/0x140
__wait_for_common+0x8d/0x1d0
__flush_work.isra.0+0x19f/0x2c0
kvm_clear_async_pf_completion_queue+0x129/0x190 [kvm]
kvm_arch_destroy_vm+0x78/0x1b0 [kvm]
kvm_put_kvm+0x1c1/0x320 [kvm]
async_pf_execute+0x198/0x260 [kvm]
process_one_work+0x145/0x2d0
worker_thread+0x27e/0x3a0
kthread+0xba/0xe0
ret_from_fork+0x2d/0x50
ret_from_fork_asm+0x11/0x20
&lt;/TASK&gt;
If kvm_clear_async_pf_completion_queue() actually flushes the workqueue,
then there&apos;s no need to gift async_pf_execute() a reference because all
invocations of async_pf_execute() will be forced to complete before the
vCPU and its VM are destroyed/freed. And that in turn fixes the module
unloading bug as __fput() won&apos;t do module_put() on the last vCPU reference
until the vCPU has been freed, e.g. if closing the vCPU file also puts the
last reference to the KVM module.
Note that kvm_check_async_pf_completion() may also take the work item off
the completion queue and so also needs to flush the work queue, as the
work will not be seen by kvm_clear_async_pf_completion_queue(). Waiting
on the workqueue could theoretically delay a vCPU due to waiting for the
work to complete, but that&apos;s a very, very small chance, and likely a very
small delay. kvm_arch_async_page_present_queued() unconditionally makes a
new request, i.e. will effectively delay entering the guest, so the
remaining work is really just:
trace_kvm_async_pf_completed(addr, cr2_or_gpa);
__kvm_vcpu_wake_up(vcpu);
mmput(mm);
and mmput() can&apos;t drop the last reference to the page tables if the vCPU is
still alive, i.e. the vCPU won&apos;t get stuck tearing down page tables.
Add a helper to do the flushing, specifically to deal with &quot;wakeup all&quot;
work items, as they aren&apos;t actually work items, i.e. are never placed in a
workqueue. Trying to flush a bogus workqueue entry rightly makes
__flush_work() complain (kudos to whoever added that sanity check).
Note, commit 5f6de5cbebee (&quot;KVM: Prevent module exit until al
---truncated---</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2024-26976</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="28" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="28" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
Squashfs: check the inode number is not the invalid value of zero
Syskiller has produced an out of bounds access in fill_meta_index().
That out of bounds access is ultimately caused because the inode
has an inode number with the invalid value of zero, which was not checked.
The reason this causes the out of bounds access is due to following
sequence of events:
1. Fill_meta_index() is called to allocate (via empty_meta_index())
and fill a metadata index. It however suffers a data read error
and aborts, invalidating the newly returned empty metadata index.
It does this by setting the inode number of the index to zero,
which means unused (zero is not a valid inode number).
2. When fill_meta_index() is subsequently called again on another
read operation, locate_meta_index() returns the previous index
because it matches the inode number of 0. Because this index
has been returned it is expected to have been filled, and because
it hasn&apos;t been, an out of bounds access is performed.
This patch adds a sanity check which checks that the inode number
is not zero when the inode is created and returns -EINVAL if it is.
[phillip@squashfs.org.uk: whitespace fix]
Link: https://lkml.kernel.org/r/20240409204723.446925-1-phillip@squashfs.org.uk</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2024-26982</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="29" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="29" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
fs: sysfs: Fix reference leak in sysfs_break_active_protection()
The sysfs_break_active_protection() routine has an obvious reference
leak in its error path. If the call to kernfs_find_and_get() fails then
kn will be NULL, so the companion sysfs_unbreak_active_protection()
routine won&apos;t get called (and would only cause an access violation by
trying to dereference kn-&gt;parent if it was called). As a result, the
reference to kobj acquired at the start of the function will never be
released.
Fix the leak by adding an explicit kobject_put() call when kn is NULL.</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2024-26993</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="30" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="30" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
serial: mxs-auart: add spinlock around changing cts state
The uart_handle_cts_change() function in serial_core expects the caller
to hold uport-&gt;lock. For example, I have seen the below kernel splat,
when the Bluetooth driver is loaded on an i.MX28 board.
[ 85.119255] ------------[ cut here ]------------
[ 85.124413] WARNING: CPU: 0 PID: 27 at /drivers/tty/serial/serial_core.c:3453 uart_handle_cts_change+0xb4/0xec
[ 85.134694] Modules linked in: hci_uart bluetooth ecdh_generic ecc wlcore_sdio configfs
[ 85.143314] CPU: 0 PID: 27 Comm: kworker/u3:0 Not tainted 6.6.3-00021-gd62a2f068f92 #1
[ 85.151396] Hardware name: Freescale MXS (Device Tree)
[ 85.156679] Workqueue: hci0 hci_power_on [bluetooth]
(...)
[ 85.191765] uart_handle_cts_change from mxs_auart_irq_handle+0x380/0x3f4
[ 85.198787] mxs_auart_irq_handle from __handle_irq_event_percpu+0x88/0x210
(...)</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2024-27000</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Low</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>3.3</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="31" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="31" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
drm: nv04: Fix out of bounds access
When Output Resource (dcb-&gt;or) value is assigned in
fabricate_dcb_output(), there may be out of bounds access to
dac_users array in case dcb-&gt;or is zero because ffs(dcb-&gt;or) is
used as index there.
The &apos;or&apos; argument of fabricate_dcb_output() must be interpreted as a
number of bit to set, not value.
Utilize macros from &apos;enum nouveau_or&apos; in calls instead of hardcoding.
Found by Linux Verification Center (linuxtesting.org) with SVACE.</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2024-27008</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.3</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:L</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="32" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="32" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix a potential buffer overflow in &apos;dp_dsc_clock_en_read()&apos;
Tell snprintf() to store at most 10 bytes in the output buffer
instead of 30.
Fixes the below:
drivers/gpu/drm/amd/amdgpu/../display/amdgpu_dm/amdgpu_dm_debugfs.c:1508 dp_dsc_clock_en_read() error: snprintf() is printing too much 30 vs 10</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2024-27045</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="33" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="33" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
USB: usb-storage: Prevent divide-by-0 error in isd200_ata_command
The isd200 sub-driver in usb-storage uses the HEADS and SECTORS values
in the ATA ID information to calculate cylinder and head values when
creating a CDB for READ or WRITE commands. The calculation involves
division and modulus operations, which will cause a crash if either of
these values is 0. While this never happens with a genuine device, it
could happen with a flawed or subversive emulation, as reported by the
syzbot fuzzer.
Protect against this possibility by refusing to bind to the device if
either the ATA_ID_HEADS or ATA_ID_SECTORS value in the device&apos;s ID
information is 0. This requires isd200_Initialization() to return a
negative error code when initialization fails; currently it always
returns 0 (even when there is an error).</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2024-27059</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="34" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="34" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
media: ttpci: fix two memleaks in budget_av_attach
When saa7146_register_device and saa7146_vv_init fails, budget_av_attach
should free the resources it allocates, like the error-handling of
ttpci_budget_init does. Besides, there are two fixme comment refers to
such deallocations.</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2024-27073</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="35" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="35" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
media: dvb-frontends: avoid stack overflow warnings with clang
A previous patch worked around a KASAN issue in stv0367, now a similar
problem showed up with clang:
drivers/media/dvb-frontends/stv0367.c:1222:12: error: stack frame size (3624) exceeds limit (2048) in &apos;stv0367ter_set_frontend&apos; [-Werror,-Wframe-larger-than]
1214 | static int stv0367ter_set_frontend(struct dvb_frontend *fe)
Rework the stv0367_writereg() function to be simpler and mark both
register access functions as noinline_for_stack so the temporary
i2c_msg structures do not get duplicated on the stack when KASAN_STACK
is enabled.</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2024-27075</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="36" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="36" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
pstore: inode: Only d_invalidate() is needed
Unloading a modular pstore backend with records in pstorefs would
trigger the dput() double-drop warning:
WARNING: CPU: 0 PID: 2569 at fs/dcache.c:762 dput.part.0+0x3f3/0x410
Using the combo of d_drop()/dput() (as mentioned in
Documentation/filesystems/vfs.rst) isn&apos;t the right approach here, and
leads to the reference counting problem seen above. Use d_invalidate()
and update the code to not bother checking for error codes that can
never happen.
---</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2024-27389</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>4.7</BaseScore>
<Vector>AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="37" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="37" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Fixed overflow check in mi_enum_attr()</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2024-27407</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="38" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="38" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
netrom: Fix data-races around sysctl_net_busy_read
We need to protect the reader reading the sysctl value because the
value can be changed concurrently.</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2024-27419</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.3</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="39" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="39" xml:lang="en">Rejected reason: This CVE ID has been rejected or withdrawn by its CVE Numbering Authority.</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2024-27426</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="40" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="40" xml:lang="en">Rejected reason: This CVE ID has been rejected or withdrawn by its CVE Numbering Authority.</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2024-27427</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="41" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="41" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
KVM: SVM: Flush pages under kvm-&gt;lock to fix UAF in svm_register_enc_region()
Do the cache flush of converted pages in svm_register_enc_region() before
dropping kvm-&gt;lock to fix use-after-free issues where region and/or its
array of pages could be freed by a different task, e.g. if userspace has
__unregister_enc_region_locked() already queued up for the region.
Note, the &quot;obvious&quot; alternative of using local variables doesn&apos;t fully
resolve the bug, as region-&gt;pages is also dynamically allocated. I.e. the
region structure itself would be fine, but region-&gt;pages could be freed.
Flushing multiple pages under kvm-&gt;lock is unfortunate, but the entire
flow is a rare slow path, and the manual flush is only needed on CPUs that
lack coherency for encrypted memory.</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2024-35791</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="42" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="42" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
x86/fpu: Keep xfd_state in sync with MSR_IA32_XFD
Commit 672365477ae8 (&quot;x86/fpu: Update XFD state where required&quot;) and
commit 8bf26758ca96 (&quot;x86/fpu: Add XFD state to fpstate&quot;) introduced a
per CPU variable xfd_state to keep the MSR_IA32_XFD value cached, in
order to avoid unnecessary writes to the MSR.
On CPU hotplug MSR_IA32_XFD is reset to the init_fpstate.xfd, which
wipes out any stale state. But the per CPU cached xfd value is not
reset, which brings them out of sync.
As a consequence a subsequent xfd_update_state() might fail to update
the MSR which in turn can result in XRSTOR raising a #NM in kernel
space, which crashes the kernel.
To fix this, introduce xfd_set_state() to write xfd_state together
with MSR_IA32_XFD, and use it in all places that set MSR_IA32_XFD.</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2024-35801</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Low</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>0.0</BaseScore>
<Vector></Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="43" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="43" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
dm snapshot: fix lockup in dm_exception_table_exit
There was reported lockup when we exit a snapshot with many exceptions.
Fix this by adding &quot;cond_resched&quot; to the loop that frees the exceptions.</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2024-35805</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="44" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="44" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
soc: fsl: qbman: Always disable interrupts when taking cgr_lock
smp_call_function_single disables IRQs when executing the callback. To
prevent deadlocks, we must disable IRQs when taking cgr_lock elsewhere.
This is already done by qman_update_cgr and qman_delete_cgr; fix the
other lockers.</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2024-35806</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Low</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>0.0</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="45" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="45" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
LoongArch: Define the __io_aw() hook as mmiowb()
Commit fb24ea52f78e0d595852e (&quot;drivers: Remove explicit invocations of
mmiowb()&quot;) remove all mmiowb() in drivers, but it says:
&quot;NOTE: mmiowb() has only ever guaranteed ordering in conjunction with
spin_unlock(). However, pairing each mmiowb() removal in this patch with
the corresponding call to spin_unlock() is not at all trivial, so there
is a small chance that this change may regress any drivers incorrectly
relying on mmiowb() to order MMIO writes between CPUs using lock-free
synchronisation.&quot;
The mmio in radeon_ring_commit() is protected by a mutex rather than a
spinlock, but in the mutex fastpath it behaves similar to spinlock. We
can add mmiowb() calls in the radeon driver but the maintainer says he
doesn&apos;t like such a workaround, and radeon is not the only example of
mutex protected mmio.
So we should extend the mmiowb tracking system from spinlock to mutex,
and maybe other locking primitives. This is not easy and error prone, so
we solve it in the architectural code, by simply defining the __io_aw()
hook as mmiowb(). And we no longer need to override queued_spin_unlock()
so use the generic definition.
Without this, we get such an error when run &apos;glxgears&apos; on weak ordering
architectures such as LoongArch:
radeon 0000:04:00.0: ring 0 stalled for more than 10324msec
radeon 0000:04:00.0: ring 3 stalled for more than 10240msec
radeon 0000:04:00.0: GPU lockup (current fence id 0x000000000001f412 last fence id 0x000000000001f414 on ring 3)
radeon 0000:04:00.0: GPU lockup (current fence id 0x000000000000f940 last fence id 0x000000000000f941 on ring 0)
radeon 0000:04:00.0: scheduling IB failed (-35).
[drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn&apos;t update BO_VA (-35)
radeon 0000:04:00.0: scheduling IB failed (-35).
[drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn&apos;t update BO_VA (-35)
radeon 0000:04:00.0: scheduling IB failed (-35).
[drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn&apos;t update BO_VA (-35)
radeon 0000:04:00.0: scheduling IB failed (-35).
[drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn&apos;t update BO_VA (-35)
radeon 0000:04:00.0: scheduling IB failed (-35).
[drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn&apos;t update BO_VA (-35)
radeon 0000:04:00.0: scheduling IB failed (-35).
[drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn&apos;t update BO_VA (-35)
radeon 0000:04:00.0: scheduling IB failed (-35).
[drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn&apos;t update BO_VA (-35)</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2024-35818</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="46" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="46" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: fix a double-free in arfs_create_groups
When `in` allocated by kvzalloc fails, arfs_create_groups will free
ft-&gt;g and return an error. However, arfs_create_table, the only caller of
arfs_create_groups, will hold this error and call to
mlx5e_destroy_flow_table, in which the ft-&gt;g will be freed again.</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2024-35835</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="47" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="47" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
f2fs: compress: fix reserve_cblocks counting error when out of space
When a file only needs one direct_node, performing the following
operations will cause the file to be unrepairable:
unisoc # ./f2fs_io compress test.apk
unisoc #df -h | grep dm-48
/dev/block/dm-48 112G 112G 1.2M 100% /data
unisoc # ./f2fs_io release_cblocks test.apk
924
unisoc # df -h | grep dm-48
/dev/block/dm-48 112G 112G 4.8M 100% /data
unisoc # dd if=/dev/random of=file4 bs=1M count=3
3145728 bytes (3.0 M) copied, 0.025 s, 120 M/s
unisoc # df -h | grep dm-48
/dev/block/dm-48 112G 112G 1.8M 100% /data
unisoc # ./f2fs_io reserve_cblocks test.apk
F2FS_IOC_RESERVE_COMPRESS_BLOCKS failed: No space left on device
adb reboot
unisoc # df -h | grep dm-48
/dev/block/dm-48 112G 112G 11M 100% /data
unisoc # ./f2fs_io reserve_cblocks test.apk
0
This is because the file has only one direct_node. After returning
to -ENOSPC, reserved_blocks += ret will not be executed. As a result,
the reserved_blocks at this time is still 0, which is not the real
number of reserved blocks. Therefore, fsck cannot be set to repair
the file.
After this patch, the fsck flag will be set to fix this problem.
unisoc # df -h | grep dm-48
/dev/block/dm-48 112G 112G 1.8M 100% /data
unisoc # ./f2fs_io reserve_cblocks test.apk
F2FS_IOC_RESERVE_COMPRESS_BLOCKS failed: No space left on device
adb reboot then fsck will be executed
unisoc # df -h | grep dm-48
/dev/block/dm-48 112G 112G 11M 100% /data
unisoc # ./f2fs_io reserve_cblocks test.apk
924</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2024-35844</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="48" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="48" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: Fix potential data-race in __nft_flowtable_type_get()
nft_unregister_flowtable_type() within nf_flow_inet_module_exit() can
concurrent with __nft_flowtable_type_get() within nf_tables_newflowtable().
And thhere is not any protection when iterate over nf_tables_flowtables
list in __nft_flowtable_type_get(). Therefore, there is pertential
data-race of nf_tables_flowtables list entry.
Use list_for_each_entry_rcu() to iterate over nf_tables_flowtables list
in __nft_flowtable_type_get(), and use rcu_read_lock() in the caller
nft_flowtable_type_get() to protect the entire type query process.</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2024-35898</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="49" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="49" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
fbmon: prevent division by zero in fb_videomode_from_videomode()
The expression htotal * vtotal can have a zero value on
overflow. It is necessary to prevent division by zero like in
fb_var_to_videomode().
Found by Linux Verification Center (linuxtesting.org) with Svace.</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2024-35922</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="50" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="50" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Fix possible memory leak in lpfc_rcv_padisc()
The call to lpfc_sli4_resume_rpi() in lpfc_rcv_padisc() may return an
unsuccessful status. In such cases, the elsiocb is not issued, the
completion is not called, and thus the elsiocb resource is leaked.
Check return value after calling lpfc_sli4_resume_rpi() and conditionally
release the elsiocb resource.</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2024-35930</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="51" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="51" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
btrfs: handle chunk tree lookup error in btrfs_relocate_sys_chunks()
The unhandled case in btrfs_relocate_sys_chunks() loop is a corruption,
as it could be caused only by two impossible conditions:
- at first the search key is set up to look for a chunk tree item, with
offset -1, this is an inexact search and the key-&gt;offset will contain
the correct offset upon a successful search, a valid chunk tree item
cannot have an offset -1
- after first successful search, the found_key corresponds to a chunk
item, the offset is decremented by 1 before the next loop, it&apos;s
impossible to find a chunk item there due to alignment and size
constraints</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2024-35936</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Low</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>0.0</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="52" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="52" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
pstore/zone: Add a null pointer check to the psz_kmsg_read
kasprintf() returns a pointer to dynamically allocated memory
which can be NULL upon failure. Ensure the allocation was successful
by checking the pointer validity.</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2024-35940</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="53" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="53" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
xsk: validate user input for XDP_{UMEM|COMPLETION}_FILL_RING
syzbot reported an illegal copy in xsk_setsockopt() [1]
Make sure to validate setsockopt() @optlen parameter.
[1]
BUG: KASAN: slab-out-of-bounds in copy_from_sockptr_offset include/linux/sockptr.h:49 [inline]
BUG: KASAN: slab-out-of-bounds in copy_from_sockptr include/linux/sockptr.h:55 [inline]
BUG: KASAN: slab-out-of-bounds in xsk_setsockopt+0x909/0xa40 net/xdp/xsk.c:1420
Read of size 4 at addr ffff888028c6cde3 by task syz-executor.0/7549
CPU: 0 PID: 7549 Comm: syz-executor.0 Not tainted 6.8.0-syzkaller-08951-gfe46a7dd189e #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024
Call Trace:
&lt;TASK&gt;
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:114
print_address_description mm/kasan/report.c:377 [inline]
print_report+0x169/0x550 mm/kasan/report.c:488
kasan_report+0x143/0x180 mm/kasan/report.c:601
copy_from_sockptr_offset include/linux/sockptr.h:49 [inline]
copy_from_sockptr include/linux/sockptr.h:55 [inline]
xsk_setsockopt+0x909/0xa40 net/xdp/xsk.c:1420
do_sock_setsockopt+0x3af/0x720 net/socket.c:2311
__sys_setsockopt+0x1ae/0x250 net/socket.c:2334
__do_sys_setsockopt net/socket.c:2343 [inline]
__se_sys_setsockopt net/socket.c:2340 [inline]
__x64_sys_setsockopt+0xb5/0xd0 net/socket.c:2340
do_syscall_64+0xfb/0x240
entry_SYSCALL_64_after_hwframe+0x6d/0x75
RIP: 0033:0x7fb40587de69
Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 e1 20 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 &lt;48&gt; 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007fb40665a0c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000036
RAX: ffffffffffffffda RBX: 00007fb4059abf80 RCX: 00007fb40587de69
RDX: 0000000000000005 RSI: 000000000000011b RDI: 0000000000000006
RBP: 00007fb4058ca47a R08: 0000000000000002 R09: 0000000000000000
R10: 0000000020001980 R11: 0000000000000246 R12: 0000000000000000
R13: 000000000000000b R14: 00007fb4059abf80 R15: 00007fff57ee4d08
&lt;/TASK&gt;
Allocated by task 7549:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:370 [inline]
__kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:387
kasan_kmalloc include/linux/kasan.h:211 [inline]
__do_kmalloc_node mm/slub.c:3966 [inline]
__kmalloc+0x233/0x4a0 mm/slub.c:3979
kmalloc include/linux/slab.h:632 [inline]
__cgroup_bpf_run_filter_setsockopt+0xd2f/0x1040 kernel/bpf/cgroup.c:1869
do_sock_setsockopt+0x6b4/0x720 net/socket.c:2293
__sys_setsockopt+0x1ae/0x250 net/socket.c:2334
__do_sys_setsockopt net/socket.c:2343 [inline]
__se_sys_setsockopt net/socket.c:2340 [inline]
__x64_sys_setsockopt+0xb5/0xd0 net/socket.c:2340
do_syscall_64+0xfb/0x240
entry_SYSCALL_64_after_hwframe+0x6d/0x75
The buggy address belongs to the object at ffff888028c6cde0
which belongs to the cache kmalloc-8 of size 8
The buggy address is located 1 bytes to the right of
allocated 2-byte region [ffff888028c6cde0, ffff888028c6cde2)
The buggy address belongs to the physical page:
page:ffffea0000a31b00 refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888028c6c9c0 pfn:0x28c6c
anon flags: 0xfff00000000800(slab|node=0|zone=1|lastcpupid=0x7ff)
page_type: 0xffffffff()
raw: 00fff00000000800 ffff888014c41280 0000000000000000 dead000000000001
raw: ffff888028c6c9c0 0000000080800057 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
page_owner tracks the page as allocated
page last allocated via order 0, migratetype Unmovable, gfp_mask 0x112cc0(GFP_USER|__GFP_NOWARN|__GFP_NORETRY), pid 6648, tgid 6644 (syz-executor.0), ts 133906047828, free_ts 133859922223
set_page_owner include/linux/page_owner.h:31 [inline]
post_alloc_hook+0x1ea/0x210 mm/page_alloc.c:1533
prep_new_page mm/page_alloc.c:
---truncated---</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2024-35976</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="54" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="54" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:HID: i2c-hid: remove I2C_HID_READ_PENDING flag to prevent lock-upThe flag I2C_HID_READ_PENDING is used to serialize I2C operations.However, this is not necessary, because I2C core already has its ownlocking for that.More importantly, this flag can cause a lock-up: if the flag is set ini2c_hid_xfer() and an interrupt happens, the interrupt handler(i2c_hid_irq) will check this flag and return immediately without doinganything, then the interrupt handler will be invoked again in aninfinite loop.Since interrupt handler is an RT task, it takes over the CPU and theflag-clearing task never gets scheduled, thus we have a lock-up.Delete this unnecessary flag.</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2024-35997</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="55" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="55" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
mlxsw: spectrum_acl_tcam: Fix incorrect list API usage
Both the function that migrates all the chunks within a region and the
function that migrates all the entries within a chunk call
list_first_entry() on the respective lists without checking that the
lists are not empty. This is incorrect usage of the API, which leads to
the following warning [1].
Fix by returning if the lists are empty as there is nothing to migrate
in this case.
[1]
WARNING: CPU: 0 PID: 6437 at drivers/net/ethernet/mellanox/mlxsw/spectrum_acl_tcam.c:1266 mlxsw_sp_acl_tcam_vchunk_migrate_all+0x1f1/0&gt;
Modules linked in:
CPU: 0 PID: 6437 Comm: kworker/0:37 Not tainted 6.9.0-rc3-custom-00883-g94a65f079ef6 #39
Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019
Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work
RIP: 0010:mlxsw_sp_acl_tcam_vchunk_migrate_all+0x1f1/0x2c0
[...]
Call Trace:
&lt;TASK&gt;
mlxsw_sp_acl_tcam_vregion_rehash_work+0x6c/0x4a0
process_one_work+0x151/0x370
worker_thread+0x2cb/0x3e0
kthread+0xd0/0x100
ret_from_fork+0x34/0x50
ret_from_fork_asm+0x1a/0x30
&lt;/TASK&gt;</Note>
</Notes>
<ReleaseDate>2024-05-31</ReleaseDate>
<CVE>CVE-2024-36006</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP2</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-05-31</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1681</URL>
</Remediation>
</Remediations>
</Vulnerability>
</cvrfdoc>