An update for kernel is now available for openEuler-22.03-LTS-SP1 Security Advisory openeuler-security@openeuler.org openEuler security committee openEuler-SA-2024-1706 Final 1.0 1.0 2024-06-14 Initial 2024-06-14 2024-06-14 openEuler SA Tool V1.0 2024-06-14 kernel security update An update for kernel is now available for openEuler-22.03-LTS-SP1. The Linux Kernel, the operating system core itself. Security Fix(es): In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Fix use-after-free of encap entry in neigh update handler Function mlx5e_rep_neigh_update() wasn't updated to accommodate rtnl lock removal from TC filter update path and properly handle concurrent encap entry insertion/deletion which can lead to following use-after-free: [23827.464923] ================================================================== [23827.469446] BUG: KASAN: use-after-free in mlx5e_encap_take+0x72/0x140 [mlx5_core] [23827.470971] Read of size 4 at addr ffff8881d132228c by task kworker/u20:6/21635 [23827.472251] [23827.472615] CPU: 9 PID: 21635 Comm: kworker/u20:6 Not tainted 5.13.0-rc3+ #5 [23827.473788] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [23827.475639] Workqueue: mlx5e mlx5e_rep_neigh_update [mlx5_core] [23827.476731] Call Trace: [23827.477260] dump_stack+0xbb/0x107 [23827.477906] print_address_description.constprop.0+0x18/0x140 [23827.478896] ? mlx5e_encap_take+0x72/0x140 [mlx5_core] [23827.479879] ? mlx5e_encap_take+0x72/0x140 [mlx5_core] [23827.480905] kasan_report.cold+0x7c/0xd8 [23827.481701] ? mlx5e_encap_take+0x72/0x140 [mlx5_core] [23827.482744] kasan_check_range+0x145/0x1a0 [23827.493112] mlx5e_encap_take+0x72/0x140 [mlx5_core] [23827.494054] ? mlx5e_tc_tun_encap_info_equal_generic+0x140/0x140 [mlx5_core] [23827.495296] mlx5e_rep_neigh_update+0x41e/0x5e0 [mlx5_core] [23827.496338] ? mlx5e_rep_neigh_entry_release+0xb80/0xb80 [mlx5_core] [23827.497486] ? read_word_at_a_time+0xe/0x20 [23827.498250] ? strscpy+0xa0/0x2a0 [23827.498889] process_one_work+0x8ac/0x14e0 [23827.499638] ? lockdep_hardirqs_on_prepare+0x400/0x400 [23827.500537] ? pwq_dec_nr_in_flight+0x2c0/0x2c0 [23827.501359] ? rwlock_bug.part.0+0x90/0x90 [23827.502116] worker_thread+0x53b/0x1220 [23827.502831] ? process_one_work+0x14e0/0x14e0 [23827.503627] kthread+0x328/0x3f0 [23827.504254] ? _raw_spin_unlock_irq+0x24/0x40 [23827.505065] ? __kthread_bind_mask+0x90/0x90 [23827.505912] ret_from_fork+0x1f/0x30 [23827.506621] [23827.506987] Allocated by task 28248: [23827.507694] kasan_save_stack+0x1b/0x40 [23827.508476] __kasan_kmalloc+0x7c/0x90 [23827.509197] mlx5e_attach_encap+0xde1/0x1d40 [mlx5_core] [23827.510194] mlx5e_tc_add_fdb_flow+0x397/0xc40 [mlx5_core] [23827.511218] __mlx5e_add_fdb_flow+0x519/0xb30 [mlx5_core] [23827.512234] mlx5e_configure_flower+0x191c/0x4870 [mlx5_core] [23827.513298] tc_setup_cb_add+0x1d5/0x420 [23827.514023] fl_hw_replace_filter+0x382/0x6a0 [cls_flower] [23827.514975] fl_change+0x2ceb/0x4a51 [cls_flower] [23827.515821] tc_new_tfilter+0x89a/0x2070 [23827.516548] rtnetlink_rcv_msg+0x644/0x8c0 [23827.517300] netlink_rcv_skb+0x11d/0x340 [23827.518021] netlink_unicast+0x42b/0x700 [23827.518742] netlink_sendmsg+0x743/0xc20 [23827.519467] sock_sendmsg+0xb2/0xe0 [23827.520131] ____sys_sendmsg+0x590/0x770 [23827.520851] ___sys_sendmsg+0xd8/0x160 [23827.521552] __sys_sendmsg+0xb7/0x140 [23827.522238] do_syscall_64+0x3a/0x70 [23827.522907] entry_SYSCALL_64_after_hwframe+0x44/0xae [23827.523797] [23827.524163] Freed by task 25948: [23827.524780] kasan_save_stack+0x1b/0x40 [23827.525488] kasan_set_track+0x1c/0x30 [23827.526187] kasan_set_free_info+0x20/0x30 [23827.526968] __kasan_slab_free+0xed/0x130 [23827.527709] slab_free_freelist_hook+0xcf/0x1d0 [23827.528528] kmem_cache_free_bulk+0x33a/0x6e0 [23827.529317] kfree_rcu_work+0x55f/0xb70 [23827.530024] process_one_work+0x8ac/0x14e0 [23827.530770] worker_thread+0x53b/0x1220 [23827.531480] kthread+0x328/0x3f0 [23827.532114] ret_from_fork+0x1f/0x30 [23827.532785] [23827.533147] Last potentially related work creation: [23827.534007] kasan_save_stack+0x1b/0x40 [23827.534710] kasan_record_aux_stack+0xab/0xc0 [23827.535492] kvfree_call_rcu+0x31/0x7b0 [23827.536206] mlx5e_tc_del ---truncated---(CVE-2021-47247) In the Linux kernel, the following vulnerability has been resolved: RDMA: Verify port when creating flow rule Validate port value provided by the user and with that remove no longer needed validation by the driver. The missing check in the mlx5_ib driver could cause to the below oops. Call trace: _create_flow_rule+0x2d4/0xf28 [mlx5_ib] mlx5_ib_create_flow+0x2d0/0x5b0 [mlx5_ib] ib_uverbs_ex_create_flow+0x4cc/0x624 [ib_uverbs] ib_uverbs_handler_UVERBS_METHOD_INVOKE_WRITE+0xd4/0x150 [ib_uverbs] ib_uverbs_cmd_verbs.isra.7+0xb28/0xc50 [ib_uverbs] ib_uverbs_ioctl+0x158/0x1d0 [ib_uverbs] do_vfs_ioctl+0xd0/0xaf0 ksys_ioctl+0x84/0xb4 __arm64_sys_ioctl+0x28/0xc4 el0_svc_common.constprop.3+0xa4/0x254 el0_svc_handler+0x84/0xa0 el0_svc+0x10/0x26c Code: b9401260 f9615681 51000400 8b001c20 (f9403c1a)(CVE-2021-47265) In the Linux kernel, the following vulnerability has been resolved: mISDN: fix possible use-after-free in HFC_cleanup() This module's remove path calls del_timer(). However, that function does not wait until the timer handler finishes. This means that the timer handler may still be running after the driver's remove function has finished, which would result in a use-after-free. Fix by calling del_timer_sync(), which makes sure the timer handler has finished, and unable to re-schedule itself.(CVE-2021-47356) In the Linux kernel, the following vulnerability has been resolved: net: stmmac: Disable Tx queues when reconfiguring the interface The Tx queues were not disabled in situations where the driver needed to stop the interface to apply a new configuration. This could result in a kernel panic when doing any of the 3 following actions: * reconfiguring the number of queues (ethtool -L) * reconfiguring the size of the ring buffers (ethtool -G) * installing/removing an XDP program (ip l set dev ethX xdp) Prevent the panic by making sure netif_tx_disable is called when stopping an interface. Without this patch, the following kernel panic can be observed when doing any of the actions above: Unable to handle kernel paging request at virtual address ffff80001238d040 [....] Call trace: dwmac4_set_addr+0x8/0x10 dev_hard_start_xmit+0xe4/0x1ac sch_direct_xmit+0xe8/0x39c __dev_queue_xmit+0x3ec/0xaf0 dev_queue_xmit+0x14/0x20 [...] [ end trace 0000000000000002 ]---(CVE-2021-47558) In the Linux kernel, the following vulnerability has been resolved: ice: Fix crash by keep old cfg when update TCs more than queues There are problems if allocated queues less than Traffic Classes. Commit a632b2a4c920 ("ice: ethtool: Prohibit improper channel config for DCB") already disallow setting less queues than TCs. Another case is if we first set less queues, and later update more TCs config due to LLDP, ice_vsi_cfg_tc() will failed but left dirty num_txq/rxq and tc_cfg in vsi, that will cause invalid pointer access. [ 95.968089] ice 0000:3b:00.1: More TCs defined than queues/rings allocated. [ 95.968092] ice 0000:3b:00.1: Trying to use more Rx queues (8), than were allocated (1)! [ 95.968093] ice 0000:3b:00.1: Failed to config TC for VSI index: 0 [ 95.969621] general protection fault: 0000 [#1] SMP NOPTI [ 95.969705] CPU: 1 PID: 58405 Comm: lldpad Kdump: loaded Tainted: G U W O --------- -t - 4.18.0 #1 [ 95.969867] Hardware name: O.E.M/BC11SPSCB10, BIOS 8.23 12/30/2021 [ 95.969992] RIP: 0010:devm_kmalloc+0xa/0x60 [ 95.970052] Code: 5c ff ff ff 31 c0 5b 5d 41 5c c3 b8 f4 ff ff ff eb f4 0f 1f 40 00 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 48 89 f8 89 d1 <8b> 97 60 02 00 00 48 8d 7e 18 48 39 f7 72 3f 55 89 ce 53 48 8b 4c [ 95.970344] RSP: 0018:ffffc9003f553888 EFLAGS: 00010206 [ 95.970425] RAX: dead000000000200 RBX: ffffea003c425b00 RCX: 00000000006080c0 [ 95.970536] RDX: 00000000006080c0 RSI: 0000000000000200 RDI: dead000000000200 [ 95.970648] RBP: dead000000000200 R08: 00000000000463c0 R09: ffff888ffa900000 [ 95.970760] R10: 0000000000000000 R11: 0000000000000002 R12: ffff888ff6b40100 [ 95.970870] R13: ffff888ff6a55018 R14: 0000000000000000 R15: ffff888ff6a55460 [ 95.970981] FS: 00007f51b7d24700(0000) GS:ffff88903ee80000(0000) knlGS:0000000000000000 [ 95.971108] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 95.971197] CR2: 00007fac5410d710 CR3: 0000000f2c1de002 CR4: 00000000007606e0 [ 95.971309] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 95.971419] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 95.971530] PKRU: 55555554 [ 95.971573] Call Trace: [ 95.971622] ice_setup_rx_ring+0x39/0x110 [ice] [ 95.971695] ice_vsi_setup_rx_rings+0x54/0x90 [ice] [ 95.971774] ice_vsi_open+0x25/0x120 [ice] [ 95.971843] ice_open_internal+0xb8/0x1f0 [ice] [ 95.971919] ice_ena_vsi+0x4f/0xd0 [ice] [ 95.971987] ice_dcb_ena_dis_vsi.constprop.5+0x29/0x90 [ice] [ 95.972082] ice_pf_dcb_cfg+0x29a/0x380 [ice] [ 95.972154] ice_dcbnl_setets+0x174/0x1b0 [ice] [ 95.972220] dcbnl_ieee_set+0x89/0x230 [ 95.972279] ? dcbnl_ieee_del+0x150/0x150 [ 95.972341] dcb_doit+0x124/0x1b0 [ 95.972392] rtnetlink_rcv_msg+0x243/0x2f0 [ 95.972457] ? dcb_doit+0x14d/0x1b0 [ 95.972510] ? __kmalloc_node_track_caller+0x1d3/0x280 [ 95.972591] ? rtnl_calcit.isra.31+0x100/0x100 [ 95.972661] netlink_rcv_skb+0xcf/0xf0 [ 95.972720] netlink_unicast+0x16d/0x220 [ 95.972781] netlink_sendmsg+0x2ba/0x3a0 [ 95.975891] sock_sendmsg+0x4c/0x50 [ 95.979032] ___sys_sendmsg+0x2e4/0x300 [ 95.982147] ? kmem_cache_alloc+0x13e/0x190 [ 95.985242] ? __wake_up_common_lock+0x79/0x90 [ 95.988338] ? __check_object_size+0xac/0x1b0 [ 95.991440] ? _copy_to_user+0x22/0x30 [ 95.994539] ? move_addr_to_user+0xbb/0xd0 [ 95.997619] ? __sys_sendmsg+0x53/0x80 [ 96.000664] __sys_sendmsg+0x53/0x80 [ 96.003747] do_syscall_64+0x5b/0x1d0 [ 96.006862] entry_SYSCALL_64_after_hwframe+0x65/0xca Only update num_txq/rxq when passed check, and restore tc_cfg if setup queue map failed.(CVE-2022-48652) In the Linux kernel, the following vulnerability has been resolved: aio: fix mremap after fork null-deref Commit e4a0d3e720e7 ("aio: Make it possible to remap aio ring") introduced a null-deref if mremap is called on an old aio mapping after fork as mm->ioctx_table will be set to NULL. [jmoyer@redhat.com: fix 80 column issue](CVE-2023-52646) In the Linux kernel, the following vulnerability has been resolved: riscv: Check if the code to patch lies in the exit section Otherwise we fall through to vmalloc_to_page() which panics since the address does not lie in the vmalloc region.(CVE-2023-52677) In the Linux kernel, the following vulnerability has been resolved: ALSA: scarlett2: Add missing error checks to *_ctl_get() The *_ctl_get() functions which call scarlett2_update_*() were not checking the return value. Fix to check the return value and pass to the caller.(CVE-2023-52680) In the Linux kernel, the following vulnerability has been resolved: powerpc/powernv: Add a null pointer check in opal_event_init() kasprintf() returns a pointer to dynamically allocated memory which can be NULL upon failure.(CVE-2023-52686) In the Linux kernel, the following vulnerability has been resolved: net: openvswitch: fix possible memory leak in ovs_meter_cmd_set() old_meter needs to be free after it is detached regardless of whether the new meter is successfully attached.(CVE-2023-52702) In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix underflow in second superblock position calculations Macro NILFS_SB2_OFFSET_BYTES, which computes the position of the second superblock, underflows when the argument device size is less than 4096 bytes. Therefore, when using this macro, it is necessary to check in advance that the device size is not less than a lower limit, or at least that underflow does not occur. The current nilfs2 implementation lacks this check, causing out-of-bound block access when mounting devices smaller than 4096 bytes: I/O error, dev loop0, sector 36028797018963960 op 0x0:(READ) flags 0x0 phys_seg 1 prio class 2 NILFS (loop0): unable to read secondary superblock (blocksize = 1024) In addition, when trying to resize the filesystem to a size below 4096 bytes, this underflow occurs in nilfs_resize_fs(), passing a huge number of segments to nilfs_sufile_resize(), corrupting parameters such as the number of segments in superblocks. This causes excessive loop iterations in nilfs_sufile_resize() during a subsequent resize ioctl, causing semaphore ns_segctor_sem to block for a long time and hang the writer thread: INFO: task segctord:5067 blocked for more than 143 seconds. Not tainted 6.2.0-rc8-syzkaller-00015-gf6feea56f66d #0 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:segctord state:D stack:23456 pid:5067 ppid:2 flags:0x00004000 Call Trace: <TASK> context_switch kernel/sched/core.c:5293 [inline] __schedule+0x1409/0x43f0 kernel/sched/core.c:6606 schedule+0xc3/0x190 kernel/sched/core.c:6682 rwsem_down_write_slowpath+0xfcf/0x14a0 kernel/locking/rwsem.c:1190 nilfs_transaction_lock+0x25c/0x4f0 fs/nilfs2/segment.c:357 nilfs_segctor_thread_construct fs/nilfs2/segment.c:2486 [inline] nilfs_segctor_thread+0x52f/0x1140 fs/nilfs2/segment.c:2570 kthread+0x270/0x300 kernel/kthread.c:376 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:308 </TASK> ... Call Trace: <TASK> folio_mark_accessed+0x51c/0xf00 mm/swap.c:515 __nilfs_get_page_block fs/nilfs2/page.c:42 [inline] nilfs_grab_buffer+0x3d3/0x540 fs/nilfs2/page.c:61 nilfs_mdt_submit_block+0xd7/0x8f0 fs/nilfs2/mdt.c:121 nilfs_mdt_read_block+0xeb/0x430 fs/nilfs2/mdt.c:176 nilfs_mdt_get_block+0x12d/0xbb0 fs/nilfs2/mdt.c:251 nilfs_sufile_get_segment_usage_block fs/nilfs2/sufile.c:92 [inline] nilfs_sufile_truncate_range fs/nilfs2/sufile.c:679 [inline] nilfs_sufile_resize+0x7a3/0x12b0 fs/nilfs2/sufile.c:777 nilfs_resize_fs+0x20c/0xed0 fs/nilfs2/super.c:422 nilfs_ioctl_resize fs/nilfs2/ioctl.c:1033 [inline] nilfs_ioctl+0x137c/0x2440 fs/nilfs2/ioctl.c:1301 ... This fixes these issues by inserting appropriate minimum device size checks or anti-underflow checks, depending on where the macro is used.(CVE-2023-52705) In the Linux kernel, the following vulnerability has been resolved: IB/IPoIB: Fix legacy IPoIB due to wrong number of queues The cited commit creates child PKEY interfaces over netlink will multiple tx and rx queues, but some devices doesn't support more than 1 tx and 1 rx queues. This causes to a crash when traffic is sent over the PKEY interface due to the parent having a single queue but the child having multiple queues. This patch fixes the number of queues to 1 for legacy IPoIB at the earliest possible point in time. BUG: kernel NULL pointer dereference, address: 000000000000036b PGD 0 P4D 0 Oops: 0000 [#1] SMP CPU: 4 PID: 209665 Comm: python3 Not tainted 6.1.0_for_upstream_min_debug_2022_12_12_17_02 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:kmem_cache_alloc+0xcb/0x450 Code: ce 7e 49 8b 50 08 49 83 78 10 00 4d 8b 28 0f 84 cb 02 00 00 4d 85 ed 0f 84 c2 02 00 00 41 8b 44 24 28 48 8d 4a 01 49 8b 3c 24 <49> 8b 5c 05 00 4c 89 e8 65 48 0f c7 0f 0f 94 c0 84 c0 74 b8 41 8b RSP: 0018:ffff88822acbbab8 EFLAGS: 00010202 RAX: 0000000000000070 RBX: ffff8881c28e3e00 RCX: 00000000064f8dae RDX: 00000000064f8dad RSI: 0000000000000a20 RDI: 0000000000030d00 RBP: 0000000000000a20 R08: ffff8882f5d30d00 R09: ffff888104032f40 R10: ffff88810fade828 R11: 736f6d6570736575 R12: ffff88810081c000 R13: 00000000000002fb R14: ffffffff817fc865 R15: 0000000000000000 FS: 00007f9324ff9700(0000) GS:ffff8882f5d00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000000000000036b CR3: 00000001125af004 CR4: 0000000000370ea0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> skb_clone+0x55/0xd0 ip6_finish_output2+0x3fe/0x690 ip6_finish_output+0xfa/0x310 ip6_send_skb+0x1e/0x60 udp_v6_send_skb+0x1e5/0x420 udpv6_sendmsg+0xb3c/0xe60 ? ip_mc_finish_output+0x180/0x180 ? __switch_to_asm+0x3a/0x60 ? __switch_to_asm+0x34/0x60 sock_sendmsg+0x33/0x40 __sys_sendto+0x103/0x160 ? _copy_to_user+0x21/0x30 ? kvm_clock_get_cycles+0xd/0x10 ? ktime_get_ts64+0x49/0xe0 __x64_sys_sendto+0x25/0x30 do_syscall_64+0x3d/0x90 entry_SYSCALL_64_after_hwframe+0x46/0xb0 RIP: 0033:0x7f9374f1ed14 Code: 42 41 f8 ff 44 8b 4c 24 2c 4c 8b 44 24 20 89 c5 44 8b 54 24 28 48 8b 54 24 18 b8 2c 00 00 00 48 8b 74 24 10 8b 7c 24 08 0f 05 <48> 3d 00 f0 ff ff 77 34 89 ef 48 89 44 24 08 e8 68 41 f8 ff 48 8b RSP: 002b:00007f9324ff7bd0 EFLAGS: 00000293 ORIG_RAX: 000000000000002c RAX: ffffffffffffffda RBX: 00007f9324ff7cc8 RCX: 00007f9374f1ed14 RDX: 00000000000002fb RSI: 00007f93000052f0 RDI: 0000000000000030 RBP: 0000000000000000 R08: 00007f9324ff7d40 R09: 000000000000001c R10: 0000000000000000 R11: 0000000000000293 R12: 0000000000000000 R13: 000000012a05f200 R14: 0000000000000001 R15: 00007f9374d57bdc </TASK>(CVE-2023-52745) In the Linux kernel, the following vulnerability has been resolved: xfrm/compat: prevent potential spectre v1 gadget in xfrm_xlate32_attr() int type = nla_type(nla); if (type > XFRMA_MAX) { return -EOPNOTSUPP; } @type is then used as an array index and can be used as a Spectre v1 gadget. if (nla_len(nla) < compat_policy[type].len) { array_index_nospec() can be used to prevent leaking content of kernel memory to malicious users.(CVE-2023-52746) In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Avoid NULL dereference of timing generator [Why & How] Check whether assigned timing generator is NULL or not before accessing its funcs to prevent NULL dereference.(CVE-2023-52753) In the Linux kernel, the following vulnerability has been resolved: net/smc: avoid data corruption caused by decline We found a data corruption issue during testing of SMC-R on Redis applications. The benchmark has a low probability of reporting a strange error as shown below. "Error: Protocol error, got "\xe2" as reply type byte" Finally, we found that the retrieved error data was as follows: 0xE2 0xD4 0xC3 0xD9 0x04 0x00 0x2C 0x20 0xA6 0x56 0x00 0x16 0x3E 0x0C 0xCB 0x04 0x02 0x01 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0xE2 It is quite obvious that this is a SMC DECLINE message, which means that the applications received SMC protocol message. We found that this was caused by the following situations: client server ¦ clc proposal -------------> ¦ clc accept <------------- ¦ clc confirm -------------> wait llc confirm send llc confirm ¦failed llc confirm ¦ x------ (after 2s)timeout wait llc confirm rsp wait decline (after 1s) timeout (after 2s) timeout ¦ decline --------------> ¦ decline <-------------- As a result, a decline message was sent in the implementation, and this message was read from TCP by the already-fallback connection. This patch double the client timeout as 2x of the server value, With this simple change, the Decline messages should never cross or collide (during Confirm link timeout). This issue requires an immediate solution, since the protocol updates involve a more long-term solution.(CVE-2023-52775) In the Linux kernel, the following vulnerability has been resolved: ipvlan: add ipvlan_route_v6_outbound() helper Inspired by syzbot reports using a stack of multiple ipvlan devices. Reduce stack size needed in ipvlan_process_v6_outbound() by moving the flowi6 struct used for the route lookup in an non inlined helper. ipvlan_route_v6_outbound() needs 120 bytes on the stack, immediately reclaimed. Also make sure ipvlan_process_v4_outbound() is not inlined. We might also have to lower MAX_NEST_DEV, because only syzbot uses setups with more than four stacked devices. BUG: TASK stack guard page was hit at ffffc9000e803ff8 (stack is ffffc9000e804000..ffffc9000e808000) stack guard page: 0000 [#1] SMP KASAN CPU: 0 PID: 13442 Comm: syz-executor.4 Not tainted 6.1.52-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/09/2023 RIP: 0010:kasan_check_range+0x4/0x2a0 mm/kasan/generic.c:188 Code: 48 01 c6 48 89 c7 e8 db 4e c1 03 31 c0 5d c3 cc 0f 0b eb 02 0f 0b b8 ea ff ff ff 5d c3 cc 00 00 cc cc 00 00 cc cc 55 48 89 e5 <41> 57 41 56 41 55 41 54 53 b0 01 48 85 f6 0f 84 a4 01 00 00 48 89 RSP: 0018:ffffc9000e804000 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffff817e5bf2 RDX: 0000000000000000 RSI: 0000000000000008 RDI: ffffffff887c6568 RBP: ffffc9000e804000 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: dffffc0000000001 R12: 1ffff92001d0080c R13: dffffc0000000000 R14: ffffffff87e6b100 R15: 0000000000000000 FS: 00007fd0c55826c0(0000) GS:ffff8881f6800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffc9000e803ff8 CR3: 0000000170ef7000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <#DF> </#DF> <TASK> [<ffffffff81f281d1>] __kasan_check_read+0x11/0x20 mm/kasan/shadow.c:31 [<ffffffff817e5bf2>] instrument_atomic_read include/linux/instrumented.h:72 [inline] [<ffffffff817e5bf2>] _test_bit include/asm-generic/bitops/instrumented-non-atomic.h:141 [inline] [<ffffffff817e5bf2>] cpumask_test_cpu include/linux/cpumask.h:506 [inline] [<ffffffff817e5bf2>] cpu_online include/linux/cpumask.h:1092 [inline] [<ffffffff817e5bf2>] trace_lock_acquire include/trace/events/lock.h:24 [inline] [<ffffffff817e5bf2>] lock_acquire+0xe2/0x590 kernel/locking/lockdep.c:5632 [<ffffffff8563221e>] rcu_lock_acquire+0x2e/0x40 include/linux/rcupdate.h:306 [<ffffffff8561464d>] rcu_read_lock include/linux/rcupdate.h:747 [inline] [<ffffffff8561464d>] ip6_pol_route+0x15d/0x1440 net/ipv6/route.c:2221 [<ffffffff85618120>] ip6_pol_route_output+0x50/0x80 net/ipv6/route.c:2606 [<ffffffff856f65b5>] pol_lookup_func include/net/ip6_fib.h:584 [inline] [<ffffffff856f65b5>] fib6_rule_lookup+0x265/0x620 net/ipv6/fib6_rules.c:116 [<ffffffff85618009>] ip6_route_output_flags_noref+0x2d9/0x3a0 net/ipv6/route.c:2638 [<ffffffff8561821a>] ip6_route_output_flags+0xca/0x340 net/ipv6/route.c:2651 [<ffffffff838bd5a3>] ip6_route_output include/net/ip6_route.h:100 [inline] [<ffffffff838bd5a3>] ipvlan_process_v6_outbound drivers/net/ipvlan/ipvlan_core.c:473 [inline] [<ffffffff838bd5a3>] ipvlan_process_outbound drivers/net/ipvlan/ipvlan_core.c:529 [inline] [<ffffffff838bd5a3>] ipvlan_xmit_mode_l3 drivers/net/ipvlan/ipvlan_core.c:602 [inline] [<ffffffff838bd5a3>] ipvlan_queue_xmit+0xc33/0x1be0 drivers/net/ipvlan/ipvlan_core.c:677 [<ffffffff838c2909>] ipvlan_start_xmit+0x49/0x100 drivers/net/ipvlan/ipvlan_main.c:229 [<ffffffff84d03900>] netdev_start_xmit include/linux/netdevice.h:4966 [inline] [<ffffffff84d03900>] xmit_one net/core/dev.c:3644 [inline] [<ffffffff84d03900>] dev_hard_start_xmit+0x320/0x980 net/core/dev.c:3660 [<ffffffff84d080e2>] __dev_queue_xmit+0x16b2/0x3370 net/core/dev.c:4324 [<ffffffff855ce4cd>] dev_queue_xmit include/linux/netdevice.h:3067 [inline] [<ffffffff855ce4cd>] neigh_hh_output include/net/neighbour.h:529 [inline] [<f ---truncated---(CVE-2023-52796) In the Linux kernel, the following vulnerability has been resolved: wifi: ath11k: fix dfs radar event locking The ath11k active pdevs are protected by RCU but the DFS radar event handling code calling ath11k_mac_get_ar_by_pdev_id() was not marked as a read-side critical section. Mark the code in question as an RCU read-side critical section to avoid any potential use-after-free issues. Compile tested only.(CVE-2023-52798) In the Linux kernel, the following vulnerability has been resolved: jfs: fix array-index-out-of-bounds in dbFindLeaf Currently while searching for dmtree_t for sufficient free blocks there is an array out of bounds while getting element in tp->dm_stree. To add the required check for out of bound we first need to determine the type of dmtree. Thus added an extra parameter to dbFindLeaf so that the type of tree can be determined and the required check can be applied.(CVE-2023-52799) In the Linux kernel, the following vulnerability has been resolved: wifi: ath11k: fix htt pktlog locking The ath11k active pdevs are protected by RCU but the htt pktlog handling code calling ath11k_mac_get_ar_by_pdev_id() was not marked as a read-side critical section. Mark the code in question as an RCU read-side critical section to avoid any potential use-after-free issues. Compile tested only.(CVE-2023-52800) In the Linux kernel, the following vulnerability has been resolved: SUNRPC: Fix RPC client cleaned up the freed pipefs dentries RPC client pipefs dentries cleanup is in separated rpc_remove_pipedir() workqueue,which takes care about pipefs superblock locking. In some special scenarios, when kernel frees the pipefs sb of the current client and immediately alloctes a new pipefs sb, rpc_remove_pipedir function would misjudge the existence of pipefs sb which is not the one it used to hold. As a result, the rpc_remove_pipedir would clean the released freed pipefs dentries. To fix this issue, rpc_remove_pipedir should check whether the current pipefs sb is consistent with the original pipefs sb. This error can be catched by KASAN: ========================================================= [ 250.497700] BUG: KASAN: slab-use-after-free in dget_parent+0x195/0x200 [ 250.498315] Read of size 4 at addr ffff88800a2ab804 by task kworker/0:18/106503 [ 250.500549] Workqueue: events rpc_free_client_work [ 250.501001] Call Trace: [ 250.502880] kasan_report+0xb6/0xf0 [ 250.503209] ? dget_parent+0x195/0x200 [ 250.503561] dget_parent+0x195/0x200 [ 250.503897] ? __pfx_rpc_clntdir_depopulate+0x10/0x10 [ 250.504384] rpc_rmdir_depopulate+0x1b/0x90 [ 250.504781] rpc_remove_client_dir+0xf5/0x150 [ 250.505195] rpc_free_client_work+0xe4/0x230 [ 250.505598] process_one_work+0x8ee/0x13b0 ... [ 22.039056] Allocated by task 244: [ 22.039390] kasan_save_stack+0x22/0x50 [ 22.039758] kasan_set_track+0x25/0x30 [ 22.040109] __kasan_slab_alloc+0x59/0x70 [ 22.040487] kmem_cache_alloc_lru+0xf0/0x240 [ 22.040889] __d_alloc+0x31/0x8e0 [ 22.041207] d_alloc+0x44/0x1f0 [ 22.041514] __rpc_lookup_create_exclusive+0x11c/0x140 [ 22.041987] rpc_mkdir_populate.constprop.0+0x5f/0x110 [ 22.042459] rpc_create_client_dir+0x34/0x150 [ 22.042874] rpc_setup_pipedir_sb+0x102/0x1c0 [ 22.043284] rpc_client_register+0x136/0x4e0 [ 22.043689] rpc_new_client+0x911/0x1020 [ 22.044057] rpc_create_xprt+0xcb/0x370 [ 22.044417] rpc_create+0x36b/0x6c0 ... [ 22.049524] Freed by task 0: [ 22.049803] kasan_save_stack+0x22/0x50 [ 22.050165] kasan_set_track+0x25/0x30 [ 22.050520] kasan_save_free_info+0x2b/0x50 [ 22.050921] __kasan_slab_free+0x10e/0x1a0 [ 22.051306] kmem_cache_free+0xa5/0x390 [ 22.051667] rcu_core+0x62c/0x1930 [ 22.051995] __do_softirq+0x165/0x52a [ 22.052347] [ 22.052503] Last potentially related work creation: [ 22.052952] kasan_save_stack+0x22/0x50 [ 22.053313] __kasan_record_aux_stack+0x8e/0xa0 [ 22.053739] __call_rcu_common.constprop.0+0x6b/0x8b0 [ 22.054209] dentry_free+0xb2/0x140 [ 22.054540] __dentry_kill+0x3be/0x540 [ 22.054900] shrink_dentry_list+0x199/0x510 [ 22.055293] shrink_dcache_parent+0x190/0x240 [ 22.055703] do_one_tree+0x11/0x40 [ 22.056028] shrink_dcache_for_umount+0x61/0x140 [ 22.056461] generic_shutdown_super+0x70/0x590 [ 22.056879] kill_anon_super+0x3a/0x60 [ 22.057234] rpc_kill_sb+0x121/0x200(CVE-2023-52803) In the Linux kernel, the following vulnerability has been resolved: net: hns3: fix out-of-bounds access may occur when coalesce info is read via debugfs The hns3 driver define an array of string to show the coalesce info, but if the kernel adds a new mode or a new state, out-of-bounds access may occur when coalesce info is read via debugfs, this patch fix the problem.(CVE-2023-52807) In the Linux kernel, the following vulnerability has been resolved: clk: mediatek: clk-mt6797: Add check for mtk_alloc_clk_data Add the check for the return value of mtk_alloc_clk_data() in order to avoid NULL pointer dereference.(CVE-2023-52865) In the Linux kernel, the following vulnerability has been resolved: clk: mediatek: clk-mt2701: Add check for mtk_alloc_clk_data Add the check for the return value of mtk_alloc_clk_data() in order to avoid NULL pointer dereference.(CVE-2023-52875) In the Linux kernel, the following vulnerability has been resolved: xen-netfront: Add missing skb_mark_for_recycle Notice that skb_mark_for_recycle() is introduced later than fixes tag in commit 6a5bcd84e886 ("page_pool: Allow drivers to hint on SKB recycling"). It is believed that fixes tag were missing a call to page_pool_release_page() between v5.9 to v5.14, after which is should have used skb_mark_for_recycle(). Since v6.6 the call page_pool_release_page() were removed (in commit 535b9c61bdef ("net: page_pool: hide page_pool_release_page()") and remaining callers converted (in commit 6bfef2ec0172 ("Merge branch 'net-page_pool-remove-page_pool_release_page'")). This leak became visible in v6.8 via commit dba1b8a7ab68 ("mm/page_pool: catch page_pool memory leaks").(CVE-2024-27393) In the Linux kernel, the following vulnerability has been resolved: Bluetooth: l2cap: fix null-ptr-deref in l2cap_chan_timeout There is a race condition between l2cap_chan_timeout() and l2cap_chan_del(). When we use l2cap_chan_del() to delete the channel, the chan->conn will be set to null. But the conn could be dereferenced again in the mutex_lock() of l2cap_chan_timeout(). As a result the null pointer dereference bug will happen. The KASAN report triggered by POC is shown below: [ 472.074580] ================================================================== [ 472.075284] BUG: KASAN: null-ptr-deref in mutex_lock+0x68/0xc0 [ 472.075308] Write of size 8 at addr 0000000000000158 by task kworker/0:0/7 [ 472.075308] [ 472.075308] CPU: 0 PID: 7 Comm: kworker/0:0 Not tainted 6.9.0-rc5-00356-g78c0094a146b #36 [ 472.075308] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu4 [ 472.075308] Workqueue: events l2cap_chan_timeout [ 472.075308] Call Trace: [ 472.075308] <TASK> [ 472.075308] dump_stack_lvl+0x137/0x1a0 [ 472.075308] print_report+0x101/0x250 [ 472.075308] ? __virt_addr_valid+0x77/0x160 [ 472.075308] ? mutex_lock+0x68/0xc0 [ 472.075308] kasan_report+0x139/0x170 [ 472.075308] ? mutex_lock+0x68/0xc0 [ 472.075308] kasan_check_range+0x2c3/0x2e0 [ 472.075308] mutex_lock+0x68/0xc0 [ 472.075308] l2cap_chan_timeout+0x181/0x300 [ 472.075308] process_one_work+0x5d2/0xe00 [ 472.075308] worker_thread+0xe1d/0x1660 [ 472.075308] ? pr_cont_work+0x5e0/0x5e0 [ 472.075308] kthread+0x2b7/0x350 [ 472.075308] ? pr_cont_work+0x5e0/0x5e0 [ 472.075308] ? kthread_blkcg+0xd0/0xd0 [ 472.075308] ret_from_fork+0x4d/0x80 [ 472.075308] ? kthread_blkcg+0xd0/0xd0 [ 472.075308] ret_from_fork_asm+0x11/0x20 [ 472.075308] </TASK> [ 472.075308] ================================================================== [ 472.094860] Disabling lock debugging due to kernel taint [ 472.096136] BUG: kernel NULL pointer dereference, address: 0000000000000158 [ 472.096136] #PF: supervisor write access in kernel mode [ 472.096136] #PF: error_code(0x0002) - not-present page [ 472.096136] PGD 0 P4D 0 [ 472.096136] Oops: 0002 [#1] PREEMPT SMP KASAN NOPTI [ 472.096136] CPU: 0 PID: 7 Comm: kworker/0:0 Tainted: G B 6.9.0-rc5-00356-g78c0094a146b #36 [ 472.096136] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu4 [ 472.096136] Workqueue: events l2cap_chan_timeout [ 472.096136] RIP: 0010:mutex_lock+0x88/0xc0 [ 472.096136] Code: be 08 00 00 00 e8 f8 23 1f fd 4c 89 f7 be 08 00 00 00 e8 eb 23 1f fd 42 80 3c 23 00 74 08 48 88 [ 472.096136] RSP: 0018:ffff88800744fc78 EFLAGS: 00000246 [ 472.096136] RAX: 0000000000000000 RBX: 1ffff11000e89f8f RCX: ffffffff8457c865 [ 472.096136] RDX: 0000000000000001 RSI: 0000000000000008 RDI: ffff88800744fc78 [ 472.096136] RBP: 0000000000000158 R08: ffff88800744fc7f R09: 1ffff11000e89f8f [ 472.096136] R10: dffffc0000000000 R11: ffffed1000e89f90 R12: dffffc0000000000 [ 472.096136] R13: 0000000000000158 R14: ffff88800744fc78 R15: ffff888007405a00 [ 472.096136] FS: 0000000000000000(0000) GS:ffff88806d200000(0000) knlGS:0000000000000000 [ 472.096136] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 472.096136] CR2: 0000000000000158 CR3: 000000000da32000 CR4: 00000000000006f0 [ 472.096136] Call Trace: [ 472.096136] <TASK> [ 472.096136] ? __die_body+0x8d/0xe0 [ 472.096136] ? page_fault_oops+0x6b8/0x9a0 [ 472.096136] ? kernelmode_fixup_or_oops+0x20c/0x2a0 [ 472.096136] ? do_user_addr_fault+0x1027/0x1340 [ 472.096136] ? _printk+0x7a/0xa0 [ 472.096136] ? mutex_lock+0x68/0xc0 [ 472.096136] ? add_taint+0x42/0xd0 [ 472.096136] ? exc_page_fault+0x6a/0x1b0 [ 472.096136] ? asm_exc_page_fault+0x26/0x30 [ 472.096136] ? mutex_lock+0x75/0xc0 [ 472.096136] ? mutex_lock+0x88/0xc0 [ 472.096136] ? mutex_lock+0x75/0xc0 [ 472.096136] l2cap_chan_timeo ---truncated---(CVE-2024-27399) In the Linux kernel, the following vulnerability has been resolved: phonet/pep: fix racy skb_queue_empty() use The receive queues are protected by their respective spin-lock, not the socket lock. This could lead to skb_peek() unexpectedly returning NULL or a pointer to an already dequeued socket buffer.(CVE-2024-27402) In the Linux kernel, the following vulnerability has been resolved: netfilter: bridge: confirm multicast packets before passing them up the stack conntrack nf_confirm logic cannot handle cloned skbs referencing the same nf_conn entry, which will happen for multicast (broadcast) frames on bridges. Example: macvlan0 | br0 / \ ethX ethY ethX (or Y) receives a L2 multicast or broadcast packet containing an IP packet, flow is not yet in conntrack table. 1. skb passes through bridge and fake-ip (br_netfilter)Prerouting. -> skb->_nfct now references a unconfirmed entry 2. skb is broad/mcast packet. bridge now passes clones out on each bridge interface. 3. skb gets passed up the stack. 4. In macvlan case, macvlan driver retains clone(s) of the mcast skb and schedules a work queue to send them out on the lower devices. The clone skb->_nfct is not a copy, it is the same entry as the original skb. The macvlan rx handler then returns RX_HANDLER_PASS. 5. Normal conntrack hooks (in NF_INET_LOCAL_IN) confirm the orig skb. The Macvlan broadcast worker and normal confirm path will race. This race will not happen if step 2 already confirmed a clone. In that case later steps perform skb_clone() with skb->_nfct already confirmed (in hash table). This works fine. But such confirmation won't happen when eb/ip/nftables rules dropped the packets before they reached the nf_confirm step in postrouting. Pablo points out that nf_conntrack_bridge doesn't allow use of stateful nat, so we can safely discard the nf_conn entry and let inet call conntrack again. This doesn't work for bridge netfilter: skb could have a nat transformation. Also bridge nf prevents re-invocation of inet prerouting via 'sabotage_in' hook. Work around this problem by explicit confirmation of the entry at LOCAL_IN time, before upper layer has a chance to clone the unconfirmed entry. The downside is that this disables NAT and conntrack helpers. Alternative fix would be to add locking to all code parts that deal with unconfirmed packets, but even if that could be done in a sane way this opens up other problems, for example: -m physdev --physdev-out eth0 -j SNAT --snat-to 1.2.3.4 -m physdev --physdev-out eth1 -j SNAT --snat-to 1.2.3.5 For multicast case, only one of such conflicting mappings will be created, conntrack only handles 1:1 NAT mappings. Users should set create a setup that explicitly marks such traffic NOTRACK (conntrack bypass) to avoid this, but we cannot auto-bypass them, ruleset might have accept rules for untracked traffic already, so user-visible behaviour would change.(CVE-2024-27415) In the Linux kernel, the following vulnerability has been resolved: usb: typec: altmodes/displayport: create sysfs nodes as driver's default device attribute group The DisplayPort driver's sysfs nodes may be present to the userspace before typec_altmode_set_drvdata() completes in dp_altmode_probe. This means that a sysfs read can trigger a NULL pointer error by deferencing dp->hpd in hpd_show or dp->lock in pin_assignment_show, as dev_get_drvdata() returns NULL in those cases. Remove manual sysfs node creation in favor of adding attribute group as default for devices bound to the driver. The ATTRIBUTE_GROUPS() macro is not used here otherwise the path to the sysfs nodes is no longer compliant with the ABI.(CVE-2024-35790) In the Linux kernel, the following vulnerability has been resolved: PCI/PM: Drain runtime-idle callbacks before driver removal A race condition between the .runtime_idle() callback and the .remove() callback in the rtsx_pcr PCI driver leads to a kernel crash due to an unhandled page fault [1]. The problem is that rtsx_pci_runtime_idle() is not expected to be running after pm_runtime_get_sync() has been called, but the latter doesn't really guarantee that. It only guarantees that the suspend and resume callbacks will not be running when it returns. However, if a .runtime_idle() callback is already running when pm_runtime_get_sync() is called, the latter will notice that the runtime PM status of the device is RPM_ACTIVE and it will return right away without waiting for the former to complete. In fact, it cannot wait for .runtime_idle() to complete because it may be called from that callback (it arguably does not make much sense to do that, but it is not strictly prohibited). Thus in general, whoever is providing a .runtime_idle() callback needs to protect it from running in parallel with whatever code runs after pm_runtime_get_sync(). [Note that .runtime_idle() will not start after pm_runtime_get_sync() has returned, but it may continue running then if it has started earlier.] One way to address that race condition is to call pm_runtime_barrier() after pm_runtime_get_sync() (not before it, because a nonzero value of the runtime PM usage counter is necessary to prevent runtime PM callbacks from being invoked) to wait for the .runtime_idle() callback to complete should it be running at that point. A suitable place for doing that is in pci_device_remove() which calls pm_runtime_get_sync() before removing the driver, so it may as well call pm_runtime_barrier() subsequently, which will prevent the race in question from occurring, not just in the rtsx_pcr driver, but in any PCI drivers providing .runtime_idle() callbacks.(CVE-2024-35809) In the Linux kernel, the following vulnerability has been resolved: mlxsw: spectrum_acl_tcam: Fix memory leak during rehash The rehash delayed work migrates filters from one region to another. This is done by iterating over all chunks (all the filters with the same priority) in the region and in each chunk iterating over all the filters. If the migration fails, the code tries to migrate the filters back to the old region. However, the rollback itself can also fail in which case another migration will be erroneously performed. Besides the fact that this ping pong is not a very good idea, it also creates a problem. Each virtual chunk references two chunks: The currently used one ('vchunk->chunk') and a backup ('vchunk->chunk2'). During migration the first holds the chunk we want to migrate filters to and the second holds the chunk we are migrating filters from. The code currently assumes - but does not verify - that the backup chunk does not exist (NULL) if the currently used chunk does not reference the target region. This assumption breaks when we are trying to rollback a rollback, resulting in the backup chunk being overwritten and leaked [1]. Fix by not rolling back a failed rollback and add a warning to avoid future cases. [1] WARNING: CPU: 5 PID: 1063 at lib/parman.c:291 parman_destroy+0x17/0x20 Modules linked in: CPU: 5 PID: 1063 Comm: kworker/5:11 Tainted: G W 6.9.0-rc2-custom-00784-gc6a05c468a0b #14 Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019 Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work RIP: 0010:parman_destroy+0x17/0x20 [...] Call Trace: <TASK> mlxsw_sp_acl_atcam_region_fini+0x19/0x60 mlxsw_sp_acl_tcam_region_destroy+0x49/0xf0 mlxsw_sp_acl_tcam_vregion_rehash_work+0x1f1/0x470 process_one_work+0x151/0x370 worker_thread+0x2cb/0x3e0 kthread+0xd0/0x100 ret_from_fork+0x34/0x50 ret_from_fork_asm+0x1a/0x30 </TASK>(CVE-2024-35853) In the Linux kernel, the following vulnerability has been resolved: mlxsw: spectrum_acl_tcam: Fix possible use-after-free during rehash The rehash delayed work migrates filters from one region to another according to the number of available credits. The migrated from region is destroyed at the end of the work if the number of credits is non-negative as the assumption is that this is indicative of migration being complete. This assumption is incorrect as a non-negative number of credits can also be the result of a failed migration. The destruction of a region that still has filters referencing it can result in a use-after-free [1]. Fix by not destroying the region if migration failed. [1] BUG: KASAN: slab-use-after-free in mlxsw_sp_acl_ctcam_region_entry_remove+0x21d/0x230 Read of size 8 at addr ffff8881735319e8 by task kworker/0:31/3858 CPU: 0 PID: 3858 Comm: kworker/0:31 Tainted: G W 6.9.0-rc2-custom-00782-gf2275c2157d8 #5 Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019 Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work Call Trace: <TASK> dump_stack_lvl+0xc6/0x120 print_report+0xce/0x670 kasan_report+0xd7/0x110 mlxsw_sp_acl_ctcam_region_entry_remove+0x21d/0x230 mlxsw_sp_acl_ctcam_entry_del+0x2e/0x70 mlxsw_sp_acl_atcam_entry_del+0x81/0x210 mlxsw_sp_acl_tcam_vchunk_migrate_all+0x3cd/0xb50 mlxsw_sp_acl_tcam_vregion_rehash_work+0x157/0x1300 process_one_work+0x8eb/0x19b0 worker_thread+0x6c9/0xf70 kthread+0x2c9/0x3b0 ret_from_fork+0x4d/0x80 ret_from_fork_asm+0x1a/0x30 </TASK> Allocated by task 174: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 __kasan_kmalloc+0x8f/0xa0 __kmalloc+0x19c/0x360 mlxsw_sp_acl_tcam_region_create+0xdf/0x9c0 mlxsw_sp_acl_tcam_vregion_rehash_work+0x954/0x1300 process_one_work+0x8eb/0x19b0 worker_thread+0x6c9/0xf70 kthread+0x2c9/0x3b0 ret_from_fork+0x4d/0x80 ret_from_fork_asm+0x1a/0x30 Freed by task 7: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 kasan_save_free_info+0x3b/0x60 poison_slab_object+0x102/0x170 __kasan_slab_free+0x14/0x30 kfree+0xc1/0x290 mlxsw_sp_acl_tcam_region_destroy+0x272/0x310 mlxsw_sp_acl_tcam_vregion_rehash_work+0x731/0x1300 process_one_work+0x8eb/0x19b0 worker_thread+0x6c9/0xf70 kthread+0x2c9/0x3b0 ret_from_fork+0x4d/0x80 ret_from_fork_asm+0x1a/0x30(CVE-2024-35854) In the Linux kernel, the following vulnerability has been resolved: mlxsw: spectrum_acl_tcam: Fix possible use-after-free during activity update The rule activity update delayed work periodically traverses the list of configured rules and queries their activity from the device. As part of this task it accesses the entry pointed by 'ventry->entry', but this entry can be changed concurrently by the rehash delayed work, leading to a use-after-free [1]. Fix by closing the race and perform the activity query under the 'vregion->lock' mutex. [1] BUG: KASAN: slab-use-after-free in mlxsw_sp_acl_tcam_flower_rule_activity_get+0x121/0x140 Read of size 8 at addr ffff8881054ed808 by task kworker/0:18/181 CPU: 0 PID: 181 Comm: kworker/0:18 Not tainted 6.9.0-rc2-custom-00781-gd5ab772d32f7 #2 Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019 Workqueue: mlxsw_core mlxsw_sp_acl_rule_activity_update_work Call Trace: <TASK> dump_stack_lvl+0xc6/0x120 print_report+0xce/0x670 kasan_report+0xd7/0x110 mlxsw_sp_acl_tcam_flower_rule_activity_get+0x121/0x140 mlxsw_sp_acl_rule_activity_update_work+0x219/0x400 process_one_work+0x8eb/0x19b0 worker_thread+0x6c9/0xf70 kthread+0x2c9/0x3b0 ret_from_fork+0x4d/0x80 ret_from_fork_asm+0x1a/0x30 </TASK> Allocated by task 1039: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 __kasan_kmalloc+0x8f/0xa0 __kmalloc+0x19c/0x360 mlxsw_sp_acl_tcam_entry_create+0x7b/0x1f0 mlxsw_sp_acl_tcam_vchunk_migrate_all+0x30d/0xb50 mlxsw_sp_acl_tcam_vregion_rehash_work+0x157/0x1300 process_one_work+0x8eb/0x19b0 worker_thread+0x6c9/0xf70 kthread+0x2c9/0x3b0 ret_from_fork+0x4d/0x80 ret_from_fork_asm+0x1a/0x30 Freed by task 1039: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 kasan_save_free_info+0x3b/0x60 poison_slab_object+0x102/0x170 __kasan_slab_free+0x14/0x30 kfree+0xc1/0x290 mlxsw_sp_acl_tcam_vchunk_migrate_all+0x3d7/0xb50 mlxsw_sp_acl_tcam_vregion_rehash_work+0x157/0x1300 process_one_work+0x8eb/0x19b0 worker_thread+0x6c9/0xf70 kthread+0x2c9/0x3b0 ret_from_fork+0x4d/0x80 ret_from_fork_asm+0x1a/0x30(CVE-2024-35855) In the Linux kernel, the following vulnerability has been resolved: ipv6: Fix infinite recursion in fib6_dump_done(). syzkaller reported infinite recursive calls of fib6_dump_done() during netlink socket destruction. [1] From the log, syzkaller sent an AF_UNSPEC RTM_GETROUTE message, and then the response was generated. The following recvmmsg() resumed the dump for IPv6, but the first call of inet6_dump_fib() failed at kzalloc() due to the fault injection. [0] 12:01:34 executing program 3: r0 = socket$nl_route(0x10, 0x3, 0x0) sendmsg$nl_route(r0, ... snip ...) recvmmsg(r0, ... snip ...) (fail_nth: 8) Here, fib6_dump_done() was set to nlk_sk(sk)->cb.done, and the next call of inet6_dump_fib() set it to nlk_sk(sk)->cb.args[3]. syzkaller stopped receiving the response halfway through, and finally netlink_sock_destruct() called nlk_sk(sk)->cb.done(). fib6_dump_done() calls fib6_dump_end() and nlk_sk(sk)->cb.done() if it is still not NULL. fib6_dump_end() rewrites nlk_sk(sk)->cb.done() by nlk_sk(sk)->cb.args[3], but it has the same function, not NULL, calling itself recursively and hitting the stack guard page. To avoid the issue, let's set the destructor after kzalloc(). [0]: FAULT_INJECTION: forcing a failure. name failslab, interval 1, probability 0, space 0, times 0 CPU: 1 PID: 432110 Comm: syz-executor.3 Not tainted 6.8.0-12821-g537c2e91d354-dirty #11 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 Call Trace: <TASK> dump_stack_lvl (lib/dump_stack.c:117) should_fail_ex (lib/fault-inject.c:52 lib/fault-inject.c:153) should_failslab (mm/slub.c:3733) kmalloc_trace (mm/slub.c:3748 mm/slub.c:3827 mm/slub.c:3992) inet6_dump_fib (./include/linux/slab.h:628 ./include/linux/slab.h:749 net/ipv6/ip6_fib.c:662) rtnl_dump_all (net/core/rtnetlink.c:4029) netlink_dump (net/netlink/af_netlink.c:2269) netlink_recvmsg (net/netlink/af_netlink.c:1988) ____sys_recvmsg (net/socket.c:1046 net/socket.c:2801) ___sys_recvmsg (net/socket.c:2846) do_recvmmsg (net/socket.c:2943) __x64_sys_recvmmsg (net/socket.c:3041 net/socket.c:3034 net/socket.c:3034) [1]: BUG: TASK stack guard page was hit at 00000000f2fa9af1 (stack is 00000000b7912430..000000009a436beb) stack guard page: 0000 [#1] PREEMPT SMP KASAN CPU: 1 PID: 223719 Comm: kworker/1:3 Not tainted 6.8.0-12821-g537c2e91d354-dirty #11 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 Workqueue: events netlink_sock_destruct_work RIP: 0010:fib6_dump_done (net/ipv6/ip6_fib.c:570) Code: 3c 24 e8 f3 e9 51 fd e9 28 fd ff ff 66 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 00 f3 0f 1e fa 41 57 41 56 41 55 41 54 55 48 89 fd <53> 48 8d 5d 60 e8 b6 4d 07 fd 48 89 da 48 b8 00 00 00 00 00 fc ff RSP: 0018:ffffc9000d980000 EFLAGS: 00010293 RAX: 0000000000000000 RBX: ffffffff84405990 RCX: ffffffff844059d3 RDX: ffff8881028e0000 RSI: ffffffff84405ac2 RDI: ffff88810c02f358 RBP: ffff88810c02f358 R08: 0000000000000007 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000224 R12: 0000000000000000 R13: ffff888007c82c78 R14: ffff888007c82c68 R15: ffff888007c82c68 FS: 0000000000000000(0000) GS:ffff88811b100000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffc9000d97fff8 CR3: 0000000102309002 CR4: 0000000000770ef0 PKRU: 55555554 Call Trace: <#DF> </#DF> <TASK> fib6_dump_done (net/ipv6/ip6_fib.c:572 (discriminator 1)) fib6_dump_done (net/ipv6/ip6_fib.c:572 (discriminator 1)) ... fib6_dump_done (net/ipv6/ip6_fib.c:572 (discriminator 1)) fib6_dump_done (net/ipv6/ip6_fib.c:572 (discriminator 1)) netlink_sock_destruct (net/netlink/af_netlink.c:401) __sk_destruct (net/core/sock.c:2177 (discriminator 2)) sk_destruct (net/core/sock.c:2224) __sk_free (net/core/sock.c:2235) sk_free (net/core/sock.c:2246) process_one_work (kernel/workqueue.c:3259) worker_thread (kernel/workqueue.c:3329 kernel/workqueue. ---truncated---(CVE-2024-35886) In the Linux kernel, the following vulnerability has been resolved: erspan: make sure erspan_base_hdr is present in skb->head syzbot reported a problem in ip6erspan_rcv() [1] Issue is that ip6erspan_rcv() (and erspan_rcv()) no longer make sure erspan_base_hdr is present in skb linear part (skb->head) before getting @ver field from it. Add the missing pskb_may_pull() calls. v2: Reload iph pointer in erspan_rcv() after pskb_may_pull() because skb->head might have changed. [1] BUG: KMSAN: uninit-value in pskb_may_pull_reason include/linux/skbuff.h:2742 [inline] BUG: KMSAN: uninit-value in pskb_may_pull include/linux/skbuff.h:2756 [inline] BUG: KMSAN: uninit-value in ip6erspan_rcv net/ipv6/ip6_gre.c:541 [inline] BUG: KMSAN: uninit-value in gre_rcv+0x11f8/0x1930 net/ipv6/ip6_gre.c:610 pskb_may_pull_reason include/linux/skbuff.h:2742 [inline] pskb_may_pull include/linux/skbuff.h:2756 [inline] ip6erspan_rcv net/ipv6/ip6_gre.c:541 [inline] gre_rcv+0x11f8/0x1930 net/ipv6/ip6_gre.c:610 ip6_protocol_deliver_rcu+0x1d4c/0x2ca0 net/ipv6/ip6_input.c:438 ip6_input_finish net/ipv6/ip6_input.c:483 [inline] NF_HOOK include/linux/netfilter.h:314 [inline] ip6_input+0x15d/0x430 net/ipv6/ip6_input.c:492 ip6_mc_input+0xa7e/0xc80 net/ipv6/ip6_input.c:586 dst_input include/net/dst.h:460 [inline] ip6_rcv_finish+0x955/0x970 net/ipv6/ip6_input.c:79 NF_HOOK include/linux/netfilter.h:314 [inline] ipv6_rcv+0xde/0x390 net/ipv6/ip6_input.c:310 __netif_receive_skb_one_core net/core/dev.c:5538 [inline] __netif_receive_skb+0x1da/0xa00 net/core/dev.c:5652 netif_receive_skb_internal net/core/dev.c:5738 [inline] netif_receive_skb+0x58/0x660 net/core/dev.c:5798 tun_rx_batched+0x3ee/0x980 drivers/net/tun.c:1549 tun_get_user+0x5566/0x69e0 drivers/net/tun.c:2002 tun_chr_write_iter+0x3af/0x5d0 drivers/net/tun.c:2048 call_write_iter include/linux/fs.h:2108 [inline] new_sync_write fs/read_write.c:497 [inline] vfs_write+0xb63/0x1520 fs/read_write.c:590 ksys_write+0x20f/0x4c0 fs/read_write.c:643 __do_sys_write fs/read_write.c:655 [inline] __se_sys_write fs/read_write.c:652 [inline] __x64_sys_write+0x93/0xe0 fs/read_write.c:652 do_syscall_64+0xd5/0x1f0 entry_SYSCALL_64_after_hwframe+0x6d/0x75 Uninit was created at: slab_post_alloc_hook mm/slub.c:3804 [inline] slab_alloc_node mm/slub.c:3845 [inline] kmem_cache_alloc_node+0x613/0xc50 mm/slub.c:3888 kmalloc_reserve+0x13d/0x4a0 net/core/skbuff.c:577 __alloc_skb+0x35b/0x7a0 net/core/skbuff.c:668 alloc_skb include/linux/skbuff.h:1318 [inline] alloc_skb_with_frags+0xc8/0xbf0 net/core/skbuff.c:6504 sock_alloc_send_pskb+0xa81/0xbf0 net/core/sock.c:2795 tun_alloc_skb drivers/net/tun.c:1525 [inline] tun_get_user+0x209a/0x69e0 drivers/net/tun.c:1846 tun_chr_write_iter+0x3af/0x5d0 drivers/net/tun.c:2048 call_write_iter include/linux/fs.h:2108 [inline] new_sync_write fs/read_write.c:497 [inline] vfs_write+0xb63/0x1520 fs/read_write.c:590 ksys_write+0x20f/0x4c0 fs/read_write.c:643 __do_sys_write fs/read_write.c:655 [inline] __se_sys_write fs/read_write.c:652 [inline] __x64_sys_write+0x93/0xe0 fs/read_write.c:652 do_syscall_64+0xd5/0x1f0 entry_SYSCALL_64_after_hwframe+0x6d/0x75 CPU: 1 PID: 5045 Comm: syz-executor114 Not tainted 6.9.0-rc1-syzkaller-00021-g962490525cff #0(CVE-2024-35888) In the Linux kernel, the following vulnerability has been resolved: bpf, sockmap: Prevent lock inversion deadlock in map delete elem syzkaller started using corpuses where a BPF tracing program deletes elements from a sockmap/sockhash map. Because BPF tracing programs can be invoked from any interrupt context, locks taken during a map_delete_elem operation must be hardirq-safe. Otherwise a deadlock due to lock inversion is possible, as reported by lockdep: CPU0 CPU1 ---- ---- lock(&htab->buckets[i].lock); local_irq_disable(); lock(&host->lock); lock(&htab->buckets[i].lock); <Interrupt> lock(&host->lock); Locks in sockmap are hardirq-unsafe by design. We expects elements to be deleted from sockmap/sockhash only in task (normal) context with interrupts enabled, or in softirq context. Detect when map_delete_elem operation is invoked from a context which is _not_ hardirq-unsafe, that is interrupts are disabled, and bail out with an error. Note that map updates are not affected by this issue. BPF verifier does not allow updating sockmap/sockhash from a BPF tracing program today.(CVE-2024-35895) In the Linux kernel, the following vulnerability has been resolved: netfilter: validate user input for expected length I got multiple syzbot reports showing old bugs exposed by BPF after commit 20f2505fb436 ("bpf: Try to avoid kzalloc in cgroup/{s,g}etsockopt") setsockopt() @optlen argument should be taken into account before copying data. BUG: KASAN: slab-out-of-bounds in copy_from_sockptr_offset include/linux/sockptr.h:49 [inline] BUG: KASAN: slab-out-of-bounds in copy_from_sockptr include/linux/sockptr.h:55 [inline] BUG: KASAN: slab-out-of-bounds in do_replace net/ipv4/netfilter/ip_tables.c:1111 [inline] BUG: KASAN: slab-out-of-bounds in do_ipt_set_ctl+0x902/0x3dd0 net/ipv4/netfilter/ip_tables.c:1627 Read of size 96 at addr ffff88802cd73da0 by task syz-executor.4/7238 CPU: 1 PID: 7238 Comm: syz-executor.4 Not tainted 6.9.0-rc2-next-20240403-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:114 print_address_description mm/kasan/report.c:377 [inline] print_report+0x169/0x550 mm/kasan/report.c:488 kasan_report+0x143/0x180 mm/kasan/report.c:601 kasan_check_range+0x282/0x290 mm/kasan/generic.c:189 __asan_memcpy+0x29/0x70 mm/kasan/shadow.c:105 copy_from_sockptr_offset include/linux/sockptr.h:49 [inline] copy_from_sockptr include/linux/sockptr.h:55 [inline] do_replace net/ipv4/netfilter/ip_tables.c:1111 [inline] do_ipt_set_ctl+0x902/0x3dd0 net/ipv4/netfilter/ip_tables.c:1627 nf_setsockopt+0x295/0x2c0 net/netfilter/nf_sockopt.c:101 do_sock_setsockopt+0x3af/0x720 net/socket.c:2311 __sys_setsockopt+0x1ae/0x250 net/socket.c:2334 __do_sys_setsockopt net/socket.c:2343 [inline] __se_sys_setsockopt net/socket.c:2340 [inline] __x64_sys_setsockopt+0xb5/0xd0 net/socket.c:2340 do_syscall_64+0xfb/0x240 entry_SYSCALL_64_after_hwframe+0x72/0x7a RIP: 0033:0x7fd22067dde9 Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 e1 20 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007fd21f9ff0c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000036 RAX: ffffffffffffffda RBX: 00007fd2207abf80 RCX: 00007fd22067dde9 RDX: 0000000000000040 RSI: 0000000000000000 RDI: 0000000000000003 RBP: 00007fd2206ca47a R08: 0000000000000001 R09: 0000000000000000 R10: 0000000020000880 R11: 0000000000000246 R12: 0000000000000000 R13: 000000000000000b R14: 00007fd2207abf80 R15: 00007ffd2d0170d8 </TASK> Allocated by task 7238: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3f/0x80 mm/kasan/common.c:68 poison_kmalloc_redzone mm/kasan/common.c:370 [inline] __kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:387 kasan_kmalloc include/linux/kasan.h:211 [inline] __do_kmalloc_node mm/slub.c:4069 [inline] __kmalloc_noprof+0x200/0x410 mm/slub.c:4082 kmalloc_noprof include/linux/slab.h:664 [inline] __cgroup_bpf_run_filter_setsockopt+0xd47/0x1050 kernel/bpf/cgroup.c:1869 do_sock_setsockopt+0x6b4/0x720 net/socket.c:2293 __sys_setsockopt+0x1ae/0x250 net/socket.c:2334 __do_sys_setsockopt net/socket.c:2343 [inline] __se_sys_setsockopt net/socket.c:2340 [inline] __x64_sys_setsockopt+0xb5/0xd0 net/socket.c:2340 do_syscall_64+0xfb/0x240 entry_SYSCALL_64_after_hwframe+0x72/0x7a The buggy address belongs to the object at ffff88802cd73da0 which belongs to the cache kmalloc-8 of size 8 The buggy address is located 0 bytes inside of allocated 1-byte region [ffff88802cd73da0, ffff88802cd73da1) The buggy address belongs to the physical page: page: refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff88802cd73020 pfn:0x2cd73 flags: 0xfff80000000000(node=0|zone=1|lastcpupid=0xfff) page_type: 0xffffefff(slab) raw: 00fff80000000000 ffff888015041280 dead000000000100 dead000000000122 raw: ffff88802cd73020 000000008080007f 00000001ffffefff 00 ---truncated---(CVE-2024-35896) In the Linux kernel, the following vulnerability has been resolved: bpf: Protect against int overflow for stack access size This patch re-introduces protection against the size of access to stack memory being negative; the access size can appear negative as a result of overflowing its signed int representation. This should not actually happen, as there are other protections along the way, but we should protect against it anyway. One code path was missing such protections (fixed in the previous patch in the series), causing out-of-bounds array accesses in check_stack_range_initialized(). This patch causes the verification of a program with such a non-sensical access size to fail. This check used to exist in a more indirect way, but was inadvertendly removed in a833a17aeac7.(CVE-2024-35905) In the Linux kernel, the following vulnerability has been resolved: nfc: nci: Fix uninit-value in nci_dev_up and nci_ntf_packet syzbot reported the following uninit-value access issue [1][2]: nci_rx_work() parses and processes received packet. When the payload length is zero, each message type handler reads uninitialized payload and KMSAN detects this issue. The receipt of a packet with a zero-size payload is considered unexpected, and therefore, such packets should be silently discarded. This patch resolved this issue by checking payload size before calling each message type handler codes.(CVE-2024-35915) In the Linux kernel, the following vulnerability has been resolved: usb: typec: ucsi: Limit read size on v1.2 Between UCSI 1.2 and UCSI 2.0, the size of the MESSAGE_IN region was increased from 16 to 256. In order to avoid overflowing reads for older systems, add a mechanism to use the read UCSI version to truncate read sizes on UCSI v1.2.(CVE-2024-35924) In the Linux kernel, the following vulnerability has been resolved: block: prevent division by zero in blk_rq_stat_sum() The expression dst->nr_samples + src->nr_samples may have zero value on overflow. It is necessary to add a check to avoid division by zero. Found by Linux Verification Center (linuxtesting.org) with Svace.(CVE-2024-35925) In the Linux kernel, the following vulnerability has been resolved: Bluetooth: SCO: Fix not validating setsockopt user input syzbot reported sco_sock_setsockopt() is copying data without checking user input length. BUG: KASAN: slab-out-of-bounds in copy_from_sockptr_offset include/linux/sockptr.h:49 [inline] BUG: KASAN: slab-out-of-bounds in copy_from_sockptr include/linux/sockptr.h:55 [inline] BUG: KASAN: slab-out-of-bounds in sco_sock_setsockopt+0xc0b/0xf90 net/bluetooth/sco.c:893 Read of size 4 at addr ffff88805f7b15a3 by task syz-executor.5/12578(CVE-2024-35967) In the Linux kernel, the following vulnerability has been resolved: geneve: fix header validation in geneve[6]_xmit_skb syzbot is able to trigger an uninit-value in geneve_xmit() [1] Problem : While most ip tunnel helpers (like ip_tunnel_get_dsfield()) uses skb_protocol(skb, true), pskb_inet_may_pull() is only using skb->protocol. If anything else than ETH_P_IPV6 or ETH_P_IP is found in skb->protocol, pskb_inet_may_pull() does nothing at all. If a vlan tag was provided by the caller (af_packet in the syzbot case), the network header might not point to the correct location, and skb linear part could be smaller than expected. Add skb_vlan_inet_prepare() to perform a complete mac validation. Use this in geneve for the moment, I suspect we need to adopt this more broadly. v4 - Jakub reported v3 broke l2_tos_ttl_inherit.sh selftest - Only call __vlan_get_protocol() for vlan types. v2,v3 - Addressed Sabrina comments on v1 and v2 [1] BUG: KMSAN: uninit-value in geneve_xmit_skb drivers/net/geneve.c:910 [inline] BUG: KMSAN: uninit-value in geneve_xmit+0x302d/0x5420 drivers/net/geneve.c:1030 geneve_xmit_skb drivers/net/geneve.c:910 [inline] geneve_xmit+0x302d/0x5420 drivers/net/geneve.c:1030 __netdev_start_xmit include/linux/netdevice.h:4903 [inline] netdev_start_xmit include/linux/netdevice.h:4917 [inline] xmit_one net/core/dev.c:3531 [inline] dev_hard_start_xmit+0x247/0xa20 net/core/dev.c:3547 __dev_queue_xmit+0x348d/0x52c0 net/core/dev.c:4335 dev_queue_xmit include/linux/netdevice.h:3091 [inline] packet_xmit+0x9c/0x6c0 net/packet/af_packet.c:276 packet_snd net/packet/af_packet.c:3081 [inline] packet_sendmsg+0x8bb0/0x9ef0 net/packet/af_packet.c:3113 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg+0x30f/0x380 net/socket.c:745 __sys_sendto+0x685/0x830 net/socket.c:2191 __do_sys_sendto net/socket.c:2203 [inline] __se_sys_sendto net/socket.c:2199 [inline] __x64_sys_sendto+0x125/0x1d0 net/socket.c:2199 do_syscall_64+0xd5/0x1f0 entry_SYSCALL_64_after_hwframe+0x6d/0x75 Uninit was created at: slab_post_alloc_hook mm/slub.c:3804 [inline] slab_alloc_node mm/slub.c:3845 [inline] kmem_cache_alloc_node+0x613/0xc50 mm/slub.c:3888 kmalloc_reserve+0x13d/0x4a0 net/core/skbuff.c:577 __alloc_skb+0x35b/0x7a0 net/core/skbuff.c:668 alloc_skb include/linux/skbuff.h:1318 [inline] alloc_skb_with_frags+0xc8/0xbf0 net/core/skbuff.c:6504 sock_alloc_send_pskb+0xa81/0xbf0 net/core/sock.c:2795 packet_alloc_skb net/packet/af_packet.c:2930 [inline] packet_snd net/packet/af_packet.c:3024 [inline] packet_sendmsg+0x722d/0x9ef0 net/packet/af_packet.c:3113 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg+0x30f/0x380 net/socket.c:745 __sys_sendto+0x685/0x830 net/socket.c:2191 __do_sys_sendto net/socket.c:2203 [inline] __se_sys_sendto net/socket.c:2199 [inline] __x64_sys_sendto+0x125/0x1d0 net/socket.c:2199 do_syscall_64+0xd5/0x1f0 entry_SYSCALL_64_after_hwframe+0x6d/0x75 CPU: 0 PID: 5033 Comm: syz-executor346 Not tainted 6.9.0-rc1-syzkaller-00005-g928a87efa423 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 02/29/2024(CVE-2024-35973) In the Linux kernel, the following vulnerability has been resolved: ipv4: check for NULL idev in ip_route_use_hint() syzbot was able to trigger a NULL deref in fib_validate_source() in an old tree [1]. It appears the bug exists in latest trees. All calls to __in_dev_get_rcu() must be checked for a NULL result. [1] general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] SMP KASAN KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007] CPU: 2 PID: 3257 Comm: syz-executor.3 Not tainted 5.10.0-syzkaller #0 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014 RIP: 0010:fib_validate_source+0xbf/0x15a0 net/ipv4/fib_frontend.c:425 Code: 18 f2 f2 f2 f2 42 c7 44 20 23 f3 f3 f3 f3 48 89 44 24 78 42 c6 44 20 27 f3 e8 5d 88 48 fc 4c 89 e8 48 c1 e8 03 48 89 44 24 18 <42> 80 3c 20 00 74 08 4c 89 ef e8 d2 15 98 fc 48 89 5c 24 10 41 bf RSP: 0018:ffffc900015fee40 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff88800f7a4000 RCX: ffff88800f4f90c0 RDX: 0000000000000000 RSI: 0000000004001eac RDI: ffff8880160c64c0 RBP: ffffc900015ff060 R08: 0000000000000000 R09: ffff88800f7a4000 R10: 0000000000000002 R11: ffff88800f4f90c0 R12: dffffc0000000000 R13: 0000000000000000 R14: 0000000000000000 R15: ffff88800f7a4000 FS: 00007f938acfe6c0(0000) GS:ffff888058c00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f938acddd58 CR3: 000000001248e000 CR4: 0000000000352ef0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: ip_route_use_hint+0x410/0x9b0 net/ipv4/route.c:2231 ip_rcv_finish_core+0x2c4/0x1a30 net/ipv4/ip_input.c:327 ip_list_rcv_finish net/ipv4/ip_input.c:612 [inline] ip_sublist_rcv+0x3ed/0xe50 net/ipv4/ip_input.c:638 ip_list_rcv+0x422/0x470 net/ipv4/ip_input.c:673 __netif_receive_skb_list_ptype net/core/dev.c:5572 [inline] __netif_receive_skb_list_core+0x6b1/0x890 net/core/dev.c:5620 __netif_receive_skb_list net/core/dev.c:5672 [inline] netif_receive_skb_list_internal+0x9f9/0xdc0 net/core/dev.c:5764 netif_receive_skb_list+0x55/0x3e0 net/core/dev.c:5816 xdp_recv_frames net/bpf/test_run.c:257 [inline] xdp_test_run_batch net/bpf/test_run.c:335 [inline] bpf_test_run_xdp_live+0x1818/0x1d00 net/bpf/test_run.c:363 bpf_prog_test_run_xdp+0x81f/0x1170 net/bpf/test_run.c:1376 bpf_prog_test_run+0x349/0x3c0 kernel/bpf/syscall.c:3736 __sys_bpf+0x45c/0x710 kernel/bpf/syscall.c:5115 __do_sys_bpf kernel/bpf/syscall.c:5201 [inline] __se_sys_bpf kernel/bpf/syscall.c:5199 [inline] __x64_sys_bpf+0x7c/0x90 kernel/bpf/syscall.c:5199(CVE-2024-36008) In the Linux kernel, the following vulnerability has been resolved: rtnetlink: Correct nested IFLA_VF_VLAN_LIST attribute validation Each attribute inside a nested IFLA_VF_VLAN_LIST is assumed to be a struct ifla_vf_vlan_info so the size of such attribute needs to be at least of sizeof(struct ifla_vf_vlan_info) which is 14 bytes. The current size validation in do_setvfinfo is against NLA_HDRLEN (4 bytes) which is less than sizeof(struct ifla_vf_vlan_info) so this validation is not enough and a too small attribute might be cast to a struct ifla_vf_vlan_info, this might result in an out of bands read access when accessing the saved (casted) entry in ivvl.(CVE-2024-36017) In the Linux kernel, the following vulnerability has been resolved: net: hns3: fix kernel crash when devlink reload during pf initialization The devlink reload process will access the hardware resources, but the register operation is done before the hardware is initialized. So, processing the devlink reload during initialization may lead to kernel crash. This patch fixes this by taking devl_lock during initialization.(CVE-2024-36021) In the Linux kernel, the following vulnerability has been resolved: mmc: sdhci-msm: pervent access to suspended controller Generic sdhci code registers LED device and uses host->runtime_suspended flag to protect access to it. The sdhci-msm driver doesn't set this flag, which causes a crash when LED is accessed while controller is runtime suspended. Fix this by setting the flag correctly.(CVE-2024-36029) In the Linux kernel, the following vulnerability has been resolved: net: fix out-of-bounds access in ops_init net_alloc_generic is called by net_alloc, which is called without any locking. It reads max_gen_ptrs, which is changed under pernet_ops_rwsem. It is read twice, first to allocate an array, then to set s.len, which is later used to limit the bounds of the array access. It is possible that the array is allocated and another thread is registering a new pernet ops, increments max_gen_ptrs, which is then used to set s.len with a larger than allocated length for the variable array. Fix it by reading max_gen_ptrs only once in net_alloc_generic. If max_gen_ptrs is later incremented, it will be caught in net_assign_generic.(CVE-2024-36883) In the Linux kernel, the following vulnerability has been resolved: tipc: fix UAF in error path Sam Page (sam4k) working with Trend Micro Zero Day Initiative reported a UAF in the tipc_buf_append() error path: BUG: KASAN: slab-use-after-free in kfree_skb_list_reason+0x47e/0x4c0 linux/net/core/skbuff.c:1183 Read of size 8 at addr ffff88804d2a7c80 by task poc/8034 CPU: 1 PID: 8034 Comm: poc Not tainted 6.8.2 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-debian-1.16.0-5 04/01/2014 Call Trace: <IRQ> __dump_stack linux/lib/dump_stack.c:88 dump_stack_lvl+0xd9/0x1b0 linux/lib/dump_stack.c:106 print_address_description linux/mm/kasan/report.c:377 print_report+0xc4/0x620 linux/mm/kasan/report.c:488 kasan_report+0xda/0x110 linux/mm/kasan/report.c:601 kfree_skb_list_reason+0x47e/0x4c0 linux/net/core/skbuff.c:1183 skb_release_data+0x5af/0x880 linux/net/core/skbuff.c:1026 skb_release_all linux/net/core/skbuff.c:1094 __kfree_skb linux/net/core/skbuff.c:1108 kfree_skb_reason+0x12d/0x210 linux/net/core/skbuff.c:1144 kfree_skb linux/./include/linux/skbuff.h:1244 tipc_buf_append+0x425/0xb50 linux/net/tipc/msg.c:186 tipc_link_input+0x224/0x7c0 linux/net/tipc/link.c:1324 tipc_link_rcv+0x76e/0x2d70 linux/net/tipc/link.c:1824 tipc_rcv+0x45f/0x10f0 linux/net/tipc/node.c:2159 tipc_udp_recv+0x73b/0x8f0 linux/net/tipc/udp_media.c:390 udp_queue_rcv_one_skb+0xad2/0x1850 linux/net/ipv4/udp.c:2108 udp_queue_rcv_skb+0x131/0xb00 linux/net/ipv4/udp.c:2186 udp_unicast_rcv_skb+0x165/0x3b0 linux/net/ipv4/udp.c:2346 __udp4_lib_rcv+0x2594/0x3400 linux/net/ipv4/udp.c:2422 ip_protocol_deliver_rcu+0x30c/0x4e0 linux/net/ipv4/ip_input.c:205 ip_local_deliver_finish+0x2e4/0x520 linux/net/ipv4/ip_input.c:233 NF_HOOK linux/./include/linux/netfilter.h:314 NF_HOOK linux/./include/linux/netfilter.h:308 ip_local_deliver+0x18e/0x1f0 linux/net/ipv4/ip_input.c:254 dst_input linux/./include/net/dst.h:461 ip_rcv_finish linux/net/ipv4/ip_input.c:449 NF_HOOK linux/./include/linux/netfilter.h:314 NF_HOOK linux/./include/linux/netfilter.h:308 ip_rcv+0x2c5/0x5d0 linux/net/ipv4/ip_input.c:569 __netif_receive_skb_one_core+0x199/0x1e0 linux/net/core/dev.c:5534 __netif_receive_skb+0x1f/0x1c0 linux/net/core/dev.c:5648 process_backlog+0x101/0x6b0 linux/net/core/dev.c:5976 __napi_poll.constprop.0+0xba/0x550 linux/net/core/dev.c:6576 napi_poll linux/net/core/dev.c:6645 net_rx_action+0x95a/0xe90 linux/net/core/dev.c:6781 __do_softirq+0x21f/0x8e7 linux/kernel/softirq.c:553 do_softirq linux/kernel/softirq.c:454 do_softirq+0xb2/0xf0 linux/kernel/softirq.c:441 </IRQ> <TASK> __local_bh_enable_ip+0x100/0x120 linux/kernel/softirq.c:381 local_bh_enable linux/./include/linux/bottom_half.h:33 rcu_read_unlock_bh linux/./include/linux/rcupdate.h:851 __dev_queue_xmit+0x871/0x3ee0 linux/net/core/dev.c:4378 dev_queue_xmit linux/./include/linux/netdevice.h:3169 neigh_hh_output linux/./include/net/neighbour.h:526 neigh_output linux/./include/net/neighbour.h:540 ip_finish_output2+0x169f/0x2550 linux/net/ipv4/ip_output.c:235 __ip_finish_output linux/net/ipv4/ip_output.c:313 __ip_finish_output+0x49e/0x950 linux/net/ipv4/ip_output.c:295 ip_finish_output+0x31/0x310 linux/net/ipv4/ip_output.c:323 NF_HOOK_COND linux/./include/linux/netfilter.h:303 ip_output+0x13b/0x2a0 linux/net/ipv4/ip_output.c:433 dst_output linux/./include/net/dst.h:451 ip_local_out linux/net/ipv4/ip_output.c:129 ip_send_skb+0x3e5/0x560 linux/net/ipv4/ip_output.c:1492 udp_send_skb+0x73f/0x1530 linux/net/ipv4/udp.c:963 udp_sendmsg+0x1a36/0x2b40 linux/net/ipv4/udp.c:1250 inet_sendmsg+0x105/0x140 linux/net/ipv4/af_inet.c:850 sock_sendmsg_nosec linux/net/socket.c:730 __sock_sendmsg linux/net/socket.c:745 __sys_sendto+0x42c/0x4e0 linux/net/socket.c:2191 __do_sys_sendto linux/net/socket.c:2203 __se_sys_sendto linux/net/socket.c:2199 __x64_sys_sendto+0xe0/0x1c0 linux/net/socket.c:2199 do_syscall_x64 linux/arch/x86/entry/common.c:52 do_syscall_ ---truncated---(CVE-2024-36886) In the Linux kernel, the following vulnerability has been resolved: mptcp: ensure snd_nxt is properly initialized on connect Christoph reported a splat hinting at a corrupted snd_una: WARNING: CPU: 1 PID: 38 at net/mptcp/protocol.c:1005 __mptcp_clean_una+0x4b3/0x620 net/mptcp/protocol.c:1005 Modules linked in: CPU: 1 PID: 38 Comm: kworker/1:1 Not tainted 6.9.0-rc1-gbbeac67456c9 #59 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-2.el7 04/01/2014 Workqueue: events mptcp_worker RIP: 0010:__mptcp_clean_una+0x4b3/0x620 net/mptcp/protocol.c:1005 Code: be 06 01 00 00 bf 06 01 00 00 e8 a8 12 e7 fe e9 00 fe ff ff e8 8e 1a e7 fe 0f b7 ab 3e 02 00 00 e9 d3 fd ff ff e8 7d 1a e7 fe <0f> 0b 4c 8b bb e0 05 00 00 e9 74 fc ff ff e8 6a 1a e7 fe 0f 0b e9 RSP: 0018:ffffc9000013fd48 EFLAGS: 00010293 RAX: 0000000000000000 RBX: ffff8881029bd280 RCX: ffffffff82382fe4 RDX: ffff8881003cbd00 RSI: ffffffff823833c3 RDI: 0000000000000001 RBP: 0000000000000000 R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000000 R11: fefefefefefefeff R12: ffff888138ba8000 R13: 0000000000000106 R14: ffff8881029bd908 R15: ffff888126560000 FS: 0000000000000000(0000) GS:ffff88813bd00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f604a5dae38 CR3: 0000000101dac002 CR4: 0000000000170ef0 Call Trace: <TASK> __mptcp_clean_una_wakeup net/mptcp/protocol.c:1055 [inline] mptcp_clean_una_wakeup net/mptcp/protocol.c:1062 [inline] __mptcp_retrans+0x7f/0x7e0 net/mptcp/protocol.c:2615 mptcp_worker+0x434/0x740 net/mptcp/protocol.c:2767 process_one_work+0x1e0/0x560 kernel/workqueue.c:3254 process_scheduled_works kernel/workqueue.c:3335 [inline] worker_thread+0x3c7/0x640 kernel/workqueue.c:3416 kthread+0x121/0x170 kernel/kthread.c:388 ret_from_fork+0x44/0x50 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:243 </TASK> When fallback to TCP happens early on a client socket, snd_nxt is not yet initialized and any incoming ack will copy such value into snd_una. If the mptcp worker (dumbly) tries mptcp-level re-injection after such ack, that would unconditionally trigger a send buffer cleanup using 'bad' snd_una values. We could easily disable re-injection for fallback sockets, but such dumb behavior already helped catching a few subtle issues and a very low to zero impact in practice. Instead address the issue always initializing snd_nxt (and write_seq, for consistency) at connect time.(CVE-2024-36889) In the Linux kernel, the following vulnerability has been resolved: gpiolib: cdev: fix uninitialised kfifo If a line is requested with debounce, and that results in debouncing in software, and the line is subsequently reconfigured to enable edge detection then the allocation of the kfifo to contain edge events is overlooked. This results in events being written to and read from an uninitialised kfifo. Read events are returned to userspace. Initialise the kfifo in the case where the software debounce is already active.(CVE-2024-36898) In the Linux kernel, the following vulnerability has been resolved: gpiolib: cdev: Fix use after free in lineinfo_changed_notify The use-after-free issue occurs as follows: when the GPIO chip device file is being closed by invoking gpio_chrdev_release(), watched_lines is freed by bitmap_free(), but the unregistration of lineinfo_changed_nb notifier chain failed due to waiting write rwsem. Additionally, one of the GPIO chip's lines is also in the release process and holds the notifier chain's read rwsem. Consequently, a race condition leads to the use-after-free of watched_lines. Here is the typical stack when issue happened: [free] gpio_chrdev_release() --> bitmap_free(cdev->watched_lines) <-- freed --> blocking_notifier_chain_unregister() --> down_write(&nh->rwsem) <-- waiting rwsem --> __down_write_common() --> rwsem_down_write_slowpath() --> schedule_preempt_disabled() --> schedule() [use] st54spi_gpio_dev_release() --> gpio_free() --> gpiod_free() --> gpiod_free_commit() --> gpiod_line_state_notify() --> blocking_notifier_call_chain() --> down_read(&nh->rwsem); <-- held rwsem --> notifier_call_chain() --> lineinfo_changed_notify() --> test_bit(xxxx, cdev->watched_lines) <-- use after free The side effect of the use-after-free issue is that a GPIO line event is being generated for userspace where it shouldn't. However, since the chrdev is being closed, userspace won't have the chance to read that event anyway. To fix the issue, call the bitmap_free() function after the unregistration of lineinfo_changed_nb notifier chain.(CVE-2024-36899) In the Linux kernel, the following vulnerability has been resolved: ipv6: prevent NULL dereference in ip6_output() According to syzbot, there is a chance that ip6_dst_idev() returns NULL in ip6_output(). Most places in IPv6 stack deal with a NULL idev just fine, but not here. syzbot reported: general protection fault, probably for non-canonical address 0xdffffc00000000bc: 0000 [#1] PREEMPT SMP KASAN PTI KASAN: null-ptr-deref in range [0x00000000000005e0-0x00000000000005e7] CPU: 0 PID: 9775 Comm: syz-executor.4 Not tainted 6.9.0-rc5-syzkaller-00157-g6a30653b604a #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024 RIP: 0010:ip6_output+0x231/0x3f0 net/ipv6/ip6_output.c:237 Code: 3c 1e 00 49 89 df 74 08 4c 89 ef e8 19 58 db f7 48 8b 44 24 20 49 89 45 00 49 89 c5 48 8d 9d e0 05 00 00 48 89 d8 48 c1 e8 03 <42> 0f b6 04 38 84 c0 4c 8b 74 24 28 0f 85 61 01 00 00 8b 1b 31 ff RSP: 0018:ffffc9000927f0d8 EFLAGS: 00010202 RAX: 00000000000000bc RBX: 00000000000005e0 RCX: 0000000000040000 RDX: ffffc900131f9000 RSI: 0000000000004f47 RDI: 0000000000004f48 RBP: 0000000000000000 R08: ffffffff8a1f0b9a R09: 1ffffffff1f51fad R10: dffffc0000000000 R11: fffffbfff1f51fae R12: ffff8880293ec8c0 R13: ffff88805d7fc000 R14: 1ffff1100527d91a R15: dffffc0000000000 FS: 00007f135c6856c0(0000) GS:ffff8880b9400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000020000080 CR3: 0000000064096000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> NF_HOOK include/linux/netfilter.h:314 [inline] ip6_xmit+0xefe/0x17f0 net/ipv6/ip6_output.c:358 sctp_v6_xmit+0x9f2/0x13f0 net/sctp/ipv6.c:248 sctp_packet_transmit+0x26ad/0x2ca0 net/sctp/output.c:653 sctp_packet_singleton+0x22c/0x320 net/sctp/outqueue.c:783 sctp_outq_flush_ctrl net/sctp/outqueue.c:914 [inline] sctp_outq_flush+0x6d5/0x3e20 net/sctp/outqueue.c:1212 sctp_side_effects net/sctp/sm_sideeffect.c:1198 [inline] sctp_do_sm+0x59cc/0x60c0 net/sctp/sm_sideeffect.c:1169 sctp_primitive_ASSOCIATE+0x95/0xc0 net/sctp/primitive.c:73 __sctp_connect+0x9cd/0xe30 net/sctp/socket.c:1234 sctp_connect net/sctp/socket.c:4819 [inline] sctp_inet_connect+0x149/0x1f0 net/sctp/socket.c:4834 __sys_connect_file net/socket.c:2048 [inline] __sys_connect+0x2df/0x310 net/socket.c:2065 __do_sys_connect net/socket.c:2075 [inline] __se_sys_connect net/socket.c:2072 [inline] __x64_sys_connect+0x7a/0x90 net/socket.c:2072 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf5/0x240 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f(CVE-2024-36901) In the Linux kernel, the following vulnerability has been resolved: ipv6: fib6_rules: avoid possible NULL dereference in fib6_rule_action() syzbot is able to trigger the following crash [1], caused by unsafe ip6_dst_idev() use. Indeed ip6_dst_idev() can return NULL, and must always be checked. [1] Oops: general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN PTI KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007] CPU: 0 PID: 31648 Comm: syz-executor.0 Not tainted 6.9.0-rc4-next-20240417-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024 RIP: 0010:__fib6_rule_action net/ipv6/fib6_rules.c:237 [inline] RIP: 0010:fib6_rule_action+0x241/0x7b0 net/ipv6/fib6_rules.c:267 Code: 02 00 00 49 8d 9f d8 00 00 00 48 89 d8 48 c1 e8 03 42 80 3c 20 00 74 08 48 89 df e8 f9 32 bf f7 48 8b 1b 48 89 d8 48 c1 e8 03 <42> 80 3c 20 00 74 08 48 89 df e8 e0 32 bf f7 4c 8b 03 48 89 ef 4c RSP: 0018:ffffc9000fc1f2f0 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 1a772f98c8186700 RDX: 0000000000000003 RSI: ffffffff8bcac4e0 RDI: ffffffff8c1f9760 RBP: ffff8880673fb980 R08: ffffffff8fac15ef R09: 1ffffffff1f582bd R10: dffffc0000000000 R11: fffffbfff1f582be R12: dffffc0000000000 R13: 0000000000000080 R14: ffff888076509000 R15: ffff88807a029a00 FS: 00007f55e82ca6c0(0000) GS:ffff8880b9400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000001b31d23000 CR3: 0000000022b66000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> fib_rules_lookup+0x62c/0xdb0 net/core/fib_rules.c:317 fib6_rule_lookup+0x1fd/0x790 net/ipv6/fib6_rules.c:108 ip6_route_output_flags_noref net/ipv6/route.c:2637 [inline] ip6_route_output_flags+0x38e/0x610 net/ipv6/route.c:2649 ip6_route_output include/net/ip6_route.h:93 [inline] ip6_dst_lookup_tail+0x189/0x11a0 net/ipv6/ip6_output.c:1120 ip6_dst_lookup_flow+0xb9/0x180 net/ipv6/ip6_output.c:1250 sctp_v6_get_dst+0x792/0x1e20 net/sctp/ipv6.c:326 sctp_transport_route+0x12c/0x2e0 net/sctp/transport.c:455 sctp_assoc_add_peer+0x614/0x15c0 net/sctp/associola.c:662 sctp_connect_new_asoc+0x31d/0x6c0 net/sctp/socket.c:1099 __sctp_connect+0x66d/0xe30 net/sctp/socket.c:1197 sctp_connect net/sctp/socket.c:4819 [inline] sctp_inet_connect+0x149/0x1f0 net/sctp/socket.c:4834 __sys_connect_file net/socket.c:2048 [inline] __sys_connect+0x2df/0x310 net/socket.c:2065 __do_sys_connect net/socket.c:2075 [inline] __se_sys_connect net/socket.c:2072 [inline] __x64_sys_connect+0x7a/0x90 net/socket.c:2072 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf5/0x240 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f(CVE-2024-36902) In the Linux kernel, the following vulnerability has been resolved: tcp: defer shutdown(SEND_SHUTDOWN) for TCP_SYN_RECV sockets TCP_SYN_RECV state is really special, it is only used by cross-syn connections, mostly used by fuzzers. In the following crash [1], syzbot managed to trigger a divide by zero in tcp_rcv_space_adjust() A socket makes the following state transitions, without ever calling tcp_init_transfer(), meaning tcp_init_buffer_space() is also not called. TCP_CLOSE connect() TCP_SYN_SENT TCP_SYN_RECV shutdown() -> tcp_shutdown(sk, SEND_SHUTDOWN) TCP_FIN_WAIT1 To fix this issue, change tcp_shutdown() to not perform a TCP_SYN_RECV -> TCP_FIN_WAIT1 transition, which makes no sense anyway. When tcp_rcv_state_process() later changes socket state from TCP_SYN_RECV to TCP_ESTABLISH, then look at sk->sk_shutdown to finally enter TCP_FIN_WAIT1 state, and send a FIN packet from a sane socket state. This means tcp_send_fin() can now be called from BH context, and must use GFP_ATOMIC allocations. [1] divide error: 0000 [#1] PREEMPT SMP KASAN NOPTI CPU: 1 PID: 5084 Comm: syz-executor358 Not tainted 6.9.0-rc6-syzkaller-00022-g98369dccd2f8 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024 RIP: 0010:tcp_rcv_space_adjust+0x2df/0x890 net/ipv4/tcp_input.c:767 Code: e3 04 4c 01 eb 48 8b 44 24 38 0f b6 04 10 84 c0 49 89 d5 0f 85 a5 03 00 00 41 8b 8e c8 09 00 00 89 e8 29 c8 48 0f af c3 31 d2 <48> f7 f1 48 8d 1c 43 49 8d 96 76 08 00 00 48 89 d0 48 c1 e8 03 48 RSP: 0018:ffffc900031ef3f0 EFLAGS: 00010246 RAX: 0c677a10441f8f42 RBX: 000000004fb95e7e RCX: 0000000000000000 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 RBP: 0000000027d4b11f R08: ffffffff89e535a4 R09: 1ffffffff25e6ab7 R10: dffffc0000000000 R11: ffffffff8135e920 R12: ffff88802a9f8d30 R13: dffffc0000000000 R14: ffff88802a9f8d00 R15: 1ffff1100553f2da FS: 00005555775c0380(0000) GS:ffff8880b9500000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f1155bf2304 CR3: 000000002b9f2000 CR4: 0000000000350ef0 Call Trace: <TASK> tcp_recvmsg_locked+0x106d/0x25a0 net/ipv4/tcp.c:2513 tcp_recvmsg+0x25d/0x920 net/ipv4/tcp.c:2578 inet6_recvmsg+0x16a/0x730 net/ipv6/af_inet6.c:680 sock_recvmsg_nosec net/socket.c:1046 [inline] sock_recvmsg+0x109/0x280 net/socket.c:1068 ____sys_recvmsg+0x1db/0x470 net/socket.c:2803 ___sys_recvmsg net/socket.c:2845 [inline] do_recvmmsg+0x474/0xae0 net/socket.c:2939 __sys_recvmmsg net/socket.c:3018 [inline] __do_sys_recvmmsg net/socket.c:3041 [inline] __se_sys_recvmmsg net/socket.c:3034 [inline] __x64_sys_recvmmsg+0x199/0x250 net/socket.c:3034 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf5/0x240 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7faeb6363db9 Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 c1 17 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007ffcc1997168 EFLAGS: 00000246 ORIG_RAX: 000000000000012b RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007faeb6363db9 RDX: 0000000000000001 RSI: 0000000020000bc0 RDI: 0000000000000005 RBP: 0000000000000000 R08: 0000000000000000 R09: 000000000000001c R10: 0000000000000122 R11: 0000000000000246 R12: 0000000000000000 R13: 0000000000000000 R14: 0000000000000001 R15: 0000000000000001(CVE-2024-36905) In the Linux kernel, the following vulnerability has been resolved: ARM: 9381/1: kasan: clear stale stack poison We found below OOB crash: [ 33.452494] ================================================================== [ 33.453513] BUG: KASAN: stack-out-of-bounds in refresh_cpu_vm_stats.constprop.0+0xcc/0x2ec [ 33.454660] Write of size 164 at addr c1d03d30 by task swapper/0/0 [ 33.455515] [ 33.455767] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 6.1.25-mainline #1 [ 33.456880] Hardware name: Generic DT based system [ 33.457555] unwind_backtrace from show_stack+0x18/0x1c [ 33.458326] show_stack from dump_stack_lvl+0x40/0x4c [ 33.459072] dump_stack_lvl from print_report+0x158/0x4a4 [ 33.459863] print_report from kasan_report+0x9c/0x148 [ 33.460616] kasan_report from kasan_check_range+0x94/0x1a0 [ 33.461424] kasan_check_range from memset+0x20/0x3c [ 33.462157] memset from refresh_cpu_vm_stats.constprop.0+0xcc/0x2ec [ 33.463064] refresh_cpu_vm_stats.constprop.0 from tick_nohz_idle_stop_tick+0x180/0x53c [ 33.464181] tick_nohz_idle_stop_tick from do_idle+0x264/0x354 [ 33.465029] do_idle from cpu_startup_entry+0x20/0x24 [ 33.465769] cpu_startup_entry from rest_init+0xf0/0xf4 [ 33.466528] rest_init from arch_post_acpi_subsys_init+0x0/0x18 [ 33.467397] [ 33.467644] The buggy address belongs to stack of task swapper/0/0 [ 33.468493] and is located at offset 112 in frame: [ 33.469172] refresh_cpu_vm_stats.constprop.0+0x0/0x2ec [ 33.469917] [ 33.470165] This frame has 2 objects: [ 33.470696] [32, 76) 'global_zone_diff' [ 33.470729] [112, 276) 'global_node_diff' [ 33.471294] [ 33.472095] The buggy address belongs to the physical page: [ 33.472862] page:3cd72da8 refcount:1 mapcount:0 mapping:00000000 index:0x0 pfn:0x41d03 [ 33.473944] flags: 0x1000(reserved|zone=0) [ 33.474565] raw: 00001000 ed741470 ed741470 00000000 00000000 00000000 ffffffff 00000001 [ 33.475656] raw: 00000000 [ 33.476050] page dumped because: kasan: bad access detected [ 33.476816] [ 33.477061] Memory state around the buggy address: [ 33.477732] c1d03c00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 33.478630] c1d03c80: 00 00 00 00 00 00 00 00 f1 f1 f1 f1 00 00 00 00 [ 33.479526] >c1d03d00: 00 04 f2 f2 f2 f2 00 00 00 00 00 00 f1 f1 f1 f1 [ 33.480415] ^ [ 33.481195] c1d03d80: 00 00 00 00 00 00 00 00 00 00 04 f3 f3 f3 f3 f3 [ 33.482088] c1d03e00: f3 f3 f3 f3 00 00 00 00 00 00 00 00 00 00 00 00 [ 33.482978] ================================================================== We find the root cause of this OOB is that arm does not clear stale stack poison in the case of cpuidle. This patch refer to arch/arm64/kernel/sleep.S to resolve this issue. From cited commit [1] that explain the problem Functions which the compiler has instrumented for KASAN place poison on the stack shadow upon entry and remove this poison prior to returning. In the case of cpuidle, CPUs exit the kernel a number of levels deep in C code. Any instrumented functions on this critical path will leave portions of the stack shadow poisoned. If CPUs lose context and return to the kernel via a cold path, we restore a prior context saved in __cpu_suspend_enter are forgotten, and we never remove the poison they placed in the stack shadow area by functions calls between this and the actual exit of the kernel. Thus, (depending on stackframe layout) subsequent calls to instrumented functions may hit this stale poison, resulting in (spurious) KASAN splats to the console. To avoid this, clear any stale poison from the idle thread for a CPU prior to bringing a CPU online. From cited commit [2] Extend to check for CONFIG_KASAN_STACK [1] commit 0d97e6d8024c ("arm64: kasan: clear stale stack poison") [2] commit d56a9ef84bd0 ("kasan, arm64: unpoison stack only with CONFIG_KASAN_STACK")(CVE-2024-36906) In the Linux kernel, the following vulnerability has been resolved: blk-iocost: do not WARN if iocg was already offlined In iocg_pay_debt(), warn is triggered if 'active_list' is empty, which is intended to confirm iocg is active when it has debt. However, warn can be triggered during a blkcg or disk removal, if iocg_waitq_timer_fn() is run at that time: WARNING: CPU: 0 PID: 2344971 at block/blk-iocost.c:1402 iocg_pay_debt+0x14c/0x190 Call trace: iocg_pay_debt+0x14c/0x190 iocg_kick_waitq+0x438/0x4c0 iocg_waitq_timer_fn+0xd8/0x130 __run_hrtimer+0x144/0x45c __hrtimer_run_queues+0x16c/0x244 hrtimer_interrupt+0x2cc/0x7b0 The warn in this situation is meaningless. Since this iocg is being removed, the state of the 'active_list' is irrelevant, and 'waitq_timer' is canceled after removing 'active_list' in ioc_pd_free(), which ensures iocg is freed after iocg_waitq_timer_fn() returns. Therefore, add the check if iocg was already offlined to avoid warn when removing a blkcg or disk.(CVE-2024-36908) In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Release hbalock before calling lpfc_worker_wake_up() lpfc_worker_wake_up() calls the lpfc_work_done() routine, which takes the hbalock. Thus, lpfc_worker_wake_up() should not be called while holding the hbalock to avoid potential deadlock.(CVE-2024-36924) In the Linux kernel, the following vulnerability has been resolved: net: core: reject skb_copy(_expand) for fraglist GSO skbs SKB_GSO_FRAGLIST skbs must not be linearized, otherwise they become invalid. Return NULL if such an skb is passed to skb_copy or skb_copy_expand, in order to prevent a crash on a potential later call to skb_gso_segment.(CVE-2024-36929) In the Linux kernel, the following vulnerability has been resolved: amd/amdkfd: sync all devices to wait all processes being evicted If there are more than one device doing reset in parallel, the first device will call kfd_suspend_all_processes() to evict all processes on all devices, this call takes time to finish. other device will start reset and recover without waiting. if the process has not been evicted before doing recover, it will be restored, then caused page fault.(CVE-2024-36949) In the Linux kernel, the following vulnerability has been resolved: octeontx2-af: avoid off-by-one read from userspace We try to access count + 1 byte from userspace with memdup_user(buffer, count + 1). However, the userspace only provides buffer of count bytes and only these count bytes are verified to be okay to access. To ensure the copied buffer is NUL terminated, we use memdup_user_nul instead.(CVE-2024-36957) In the Linux kernel, the following vulnerability has been resolved: fs/9p: only translate RWX permissions for plain 9P2000 Garbage in plain 9P2000's perm bits is allowed through, which causes it to be able to set (among others) the suid bit. This was presumably not the intent since the unix extended bits are handled explicitly and conditionally on .u.(CVE-2024-36964) An update for kernel is now available for openEuler-22.03-LTS-SP1. openEuler Security has rated this update as having a security impact of medium. A Common Vunlnerability Scoring System(CVSS)base score,which gives a detailed severity rating, is available for each vulnerability from the CVElink(s) in the References section. Medium kernel https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2021-47247 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2021-47265 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2021-47356 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2021-47558 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2022-48652 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52646 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52677 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52680 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52686 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52702 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52705 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52745 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52746 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52753 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52775 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52796 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52798 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52799 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52800 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52803 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52807 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52865 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52875 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-27393 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-27399 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-27402 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-27415 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35790 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35809 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35853 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35854 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35855 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35886 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35888 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35895 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35896 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35905 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35915 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35924 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35925 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35967 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35973 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-36008 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-36017 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-36021 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-36029 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-36883 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-36886 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-36889 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-36898 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-36899 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-36901 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-36902 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-36905 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-36906 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-36908 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-36924 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-36929 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-36949 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-36957 https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-36964 https://nvd.nist.gov/vuln/detail/CVE-2021-47247 https://nvd.nist.gov/vuln/detail/CVE-2021-47265 https://nvd.nist.gov/vuln/detail/CVE-2021-47356 https://nvd.nist.gov/vuln/detail/CVE-2021-47558 https://nvd.nist.gov/vuln/detail/CVE-2022-48652 https://nvd.nist.gov/vuln/detail/CVE-2023-52646 https://nvd.nist.gov/vuln/detail/CVE-2023-52677 https://nvd.nist.gov/vuln/detail/CVE-2023-52680 https://nvd.nist.gov/vuln/detail/CVE-2023-52686 https://nvd.nist.gov/vuln/detail/CVE-2023-52702 https://nvd.nist.gov/vuln/detail/CVE-2023-52705 https://nvd.nist.gov/vuln/detail/CVE-2023-52745 https://nvd.nist.gov/vuln/detail/CVE-2023-52746 https://nvd.nist.gov/vuln/detail/CVE-2023-52753 https://nvd.nist.gov/vuln/detail/CVE-2023-52775 https://nvd.nist.gov/vuln/detail/CVE-2023-52796 https://nvd.nist.gov/vuln/detail/CVE-2023-52798 https://nvd.nist.gov/vuln/detail/CVE-2023-52799 https://nvd.nist.gov/vuln/detail/CVE-2023-52800 https://nvd.nist.gov/vuln/detail/CVE-2023-52803 https://nvd.nist.gov/vuln/detail/CVE-2023-52807 https://nvd.nist.gov/vuln/detail/CVE-2023-52865 https://nvd.nist.gov/vuln/detail/CVE-2023-52875 https://nvd.nist.gov/vuln/detail/CVE-2024-27393 https://nvd.nist.gov/vuln/detail/CVE-2024-27399 https://nvd.nist.gov/vuln/detail/CVE-2024-27402 https://nvd.nist.gov/vuln/detail/CVE-2024-27415 https://nvd.nist.gov/vuln/detail/CVE-2024-35790 https://nvd.nist.gov/vuln/detail/CVE-2024-35809 https://nvd.nist.gov/vuln/detail/CVE-2024-35853 https://nvd.nist.gov/vuln/detail/CVE-2024-35854 https://nvd.nist.gov/vuln/detail/CVE-2024-35855 https://nvd.nist.gov/vuln/detail/CVE-2024-35886 https://nvd.nist.gov/vuln/detail/CVE-2024-35888 https://nvd.nist.gov/vuln/detail/CVE-2024-35895 https://nvd.nist.gov/vuln/detail/CVE-2024-35896 https://nvd.nist.gov/vuln/detail/CVE-2024-35905 https://nvd.nist.gov/vuln/detail/CVE-2024-35915 https://nvd.nist.gov/vuln/detail/CVE-2024-35924 https://nvd.nist.gov/vuln/detail/CVE-2024-35925 https://nvd.nist.gov/vuln/detail/CVE-2024-35967 https://nvd.nist.gov/vuln/detail/CVE-2024-35973 https://nvd.nist.gov/vuln/detail/CVE-2024-36008 https://nvd.nist.gov/vuln/detail/CVE-2024-36017 https://nvd.nist.gov/vuln/detail/CVE-2024-36021 https://nvd.nist.gov/vuln/detail/CVE-2024-36029 https://nvd.nist.gov/vuln/detail/CVE-2024-36883 https://nvd.nist.gov/vuln/detail/CVE-2024-36886 https://nvd.nist.gov/vuln/detail/CVE-2024-36889 https://nvd.nist.gov/vuln/detail/CVE-2024-36898 https://nvd.nist.gov/vuln/detail/CVE-2024-36899 https://nvd.nist.gov/vuln/detail/CVE-2024-36901 https://nvd.nist.gov/vuln/detail/CVE-2024-36902 https://nvd.nist.gov/vuln/detail/CVE-2024-36905 https://nvd.nist.gov/vuln/detail/CVE-2024-36906 https://nvd.nist.gov/vuln/detail/CVE-2024-36908 https://nvd.nist.gov/vuln/detail/CVE-2024-36924 https://nvd.nist.gov/vuln/detail/CVE-2024-36929 https://nvd.nist.gov/vuln/detail/CVE-2024-36949 https://nvd.nist.gov/vuln/detail/CVE-2024-36957 https://nvd.nist.gov/vuln/detail/CVE-2024-36964 openEuler-22.03-LTS-SP1 kernel-headers-5.10.0-136.79.0.159.oe2203sp1.aarch64.rpm kernel-tools-devel-5.10.0-136.79.0.159.oe2203sp1.aarch64.rpm kernel-devel-5.10.0-136.79.0.159.oe2203sp1.aarch64.rpm kernel-debugsource-5.10.0-136.79.0.159.oe2203sp1.aarch64.rpm perf-debuginfo-5.10.0-136.79.0.159.oe2203sp1.aarch64.rpm kernel-tools-5.10.0-136.79.0.159.oe2203sp1.aarch64.rpm kernel-source-5.10.0-136.79.0.159.oe2203sp1.aarch64.rpm python3-perf-debuginfo-5.10.0-136.79.0.159.oe2203sp1.aarch64.rpm kernel-tools-debuginfo-5.10.0-136.79.0.159.oe2203sp1.aarch64.rpm perf-5.10.0-136.79.0.159.oe2203sp1.aarch64.rpm python3-perf-5.10.0-136.79.0.159.oe2203sp1.aarch64.rpm kernel-5.10.0-136.79.0.159.oe2203sp1.aarch64.rpm kernel-debuginfo-5.10.0-136.79.0.159.oe2203sp1.aarch64.rpm kernel-5.10.0-136.79.0.159.oe2203sp1.src.rpm kernel-headers-5.10.0-136.79.0.159.oe2203sp1.x86_64.rpm python3-perf-debuginfo-5.10.0-136.79.0.159.oe2203sp1.x86_64.rpm kernel-source-5.10.0-136.79.0.159.oe2203sp1.x86_64.rpm kernel-debugsource-5.10.0-136.79.0.159.oe2203sp1.x86_64.rpm kernel-tools-debuginfo-5.10.0-136.79.0.159.oe2203sp1.x86_64.rpm kernel-5.10.0-136.79.0.159.oe2203sp1.x86_64.rpm perf-5.10.0-136.79.0.159.oe2203sp1.x86_64.rpm python3-perf-5.10.0-136.79.0.159.oe2203sp1.x86_64.rpm kernel-devel-5.10.0-136.79.0.159.oe2203sp1.x86_64.rpm kernel-tools-5.10.0-136.79.0.159.oe2203sp1.x86_64.rpm kernel-tools-devel-5.10.0-136.79.0.159.oe2203sp1.x86_64.rpm kernel-debuginfo-5.10.0-136.79.0.159.oe2203sp1.x86_64.rpm perf-debuginfo-5.10.0-136.79.0.159.oe2203sp1.x86_64.rpm In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Fix use-after-free of encap entry in neigh update handler Function mlx5e_rep_neigh_update() wasn't updated to accommodate rtnl lock removal from TC filter update path and properly handle concurrent encap entry insertion/deletion which can lead to following use-after-free: [23827.464923] ================================================================== [23827.469446] BUG: KASAN: use-after-free in mlx5e_encap_take+0x72/0x140 [mlx5_core] [23827.470971] Read of size 4 at addr ffff8881d132228c by task kworker/u20:6/21635 [23827.472251] [23827.472615] CPU: 9 PID: 21635 Comm: kworker/u20:6 Not tainted 5.13.0-rc3+ #5 [23827.473788] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [23827.475639] Workqueue: mlx5e mlx5e_rep_neigh_update [mlx5_core] [23827.476731] Call Trace: [23827.477260] dump_stack+0xbb/0x107 [23827.477906] print_address_description.constprop.0+0x18/0x140 [23827.478896] ? mlx5e_encap_take+0x72/0x140 [mlx5_core] [23827.479879] ? mlx5e_encap_take+0x72/0x140 [mlx5_core] [23827.480905] kasan_report.cold+0x7c/0xd8 [23827.481701] ? mlx5e_encap_take+0x72/0x140 [mlx5_core] [23827.482744] kasan_check_range+0x145/0x1a0 [23827.493112] mlx5e_encap_take+0x72/0x140 [mlx5_core] [23827.494054] ? mlx5e_tc_tun_encap_info_equal_generic+0x140/0x140 [mlx5_core] [23827.495296] mlx5e_rep_neigh_update+0x41e/0x5e0 [mlx5_core] [23827.496338] ? mlx5e_rep_neigh_entry_release+0xb80/0xb80 [mlx5_core] [23827.497486] ? read_word_at_a_time+0xe/0x20 [23827.498250] ? strscpy+0xa0/0x2a0 [23827.498889] process_one_work+0x8ac/0x14e0 [23827.499638] ? lockdep_hardirqs_on_prepare+0x400/0x400 [23827.500537] ? pwq_dec_nr_in_flight+0x2c0/0x2c0 [23827.501359] ? rwlock_bug.part.0+0x90/0x90 [23827.502116] worker_thread+0x53b/0x1220 [23827.502831] ? process_one_work+0x14e0/0x14e0 [23827.503627] kthread+0x328/0x3f0 [23827.504254] ? _raw_spin_unlock_irq+0x24/0x40 [23827.505065] ? __kthread_bind_mask+0x90/0x90 [23827.505912] ret_from_fork+0x1f/0x30 [23827.506621] [23827.506987] Allocated by task 28248: [23827.507694] kasan_save_stack+0x1b/0x40 [23827.508476] __kasan_kmalloc+0x7c/0x90 [23827.509197] mlx5e_attach_encap+0xde1/0x1d40 [mlx5_core] [23827.510194] mlx5e_tc_add_fdb_flow+0x397/0xc40 [mlx5_core] [23827.511218] __mlx5e_add_fdb_flow+0x519/0xb30 [mlx5_core] [23827.512234] mlx5e_configure_flower+0x191c/0x4870 [mlx5_core] [23827.513298] tc_setup_cb_add+0x1d5/0x420 [23827.514023] fl_hw_replace_filter+0x382/0x6a0 [cls_flower] [23827.514975] fl_change+0x2ceb/0x4a51 [cls_flower] [23827.515821] tc_new_tfilter+0x89a/0x2070 [23827.516548] rtnetlink_rcv_msg+0x644/0x8c0 [23827.517300] netlink_rcv_skb+0x11d/0x340 [23827.518021] netlink_unicast+0x42b/0x700 [23827.518742] netlink_sendmsg+0x743/0xc20 [23827.519467] sock_sendmsg+0xb2/0xe0 [23827.520131] ____sys_sendmsg+0x590/0x770 [23827.520851] ___sys_sendmsg+0xd8/0x160 [23827.521552] __sys_sendmsg+0xb7/0x140 [23827.522238] do_syscall_64+0x3a/0x70 [23827.522907] entry_SYSCALL_64_after_hwframe+0x44/0xae [23827.523797] [23827.524163] Freed by task 25948: [23827.524780] kasan_save_stack+0x1b/0x40 [23827.525488] kasan_set_track+0x1c/0x30 [23827.526187] kasan_set_free_info+0x20/0x30 [23827.526968] __kasan_slab_free+0xed/0x130 [23827.527709] slab_free_freelist_hook+0xcf/0x1d0 [23827.528528] kmem_cache_free_bulk+0x33a/0x6e0 [23827.529317] kfree_rcu_work+0x55f/0xb70 [23827.530024] process_one_work+0x8ac/0x14e0 [23827.530770] worker_thread+0x53b/0x1220 [23827.531480] kthread+0x328/0x3f0 [23827.532114] ret_from_fork+0x1f/0x30 [23827.532785] [23827.533147] Last potentially related work creation: [23827.534007] kasan_save_stack+0x1b/0x40 [23827.534710] kasan_record_aux_stack+0xab/0xc0 [23827.535492] kvfree_call_rcu+0x31/0x7b0 [23827.536206] mlx5e_tc_del ---truncated--- 2024-06-14 CVE-2021-47247 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: RDMA: Verify port when creating flow rule Validate port value provided by the user and with that remove no longer needed validation by the driver. The missing check in the mlx5_ib driver could cause to the below oops. Call trace: _create_flow_rule+0x2d4/0xf28 [mlx5_ib] mlx5_ib_create_flow+0x2d0/0x5b0 [mlx5_ib] ib_uverbs_ex_create_flow+0x4cc/0x624 [ib_uverbs] ib_uverbs_handler_UVERBS_METHOD_INVOKE_WRITE+0xd4/0x150 [ib_uverbs] ib_uverbs_cmd_verbs.isra.7+0xb28/0xc50 [ib_uverbs] ib_uverbs_ioctl+0x158/0x1d0 [ib_uverbs] do_vfs_ioctl+0xd0/0xaf0 ksys_ioctl+0x84/0xb4 __arm64_sys_ioctl+0x28/0xc4 el0_svc_common.constprop.3+0xa4/0x254 el0_svc_handler+0x84/0xa0 el0_svc+0x10/0x26c Code: b9401260 f9615681 51000400 8b001c20 (f9403c1a) 2024-06-14 CVE-2021-47265 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: mISDN: fix possible use-after-free in HFC_cleanup() This module's remove path calls del_timer(). However, that function does not wait until the timer handler finishes. This means that the timer handler may still be running after the driver's remove function has finished, which would result in a use-after-free. Fix by calling del_timer_sync(), which makes sure the timer handler has finished, and unable to re-schedule itself. 2024-06-14 CVE-2021-47356 openEuler-22.03-LTS-SP1 Medium 5.8 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: net: stmmac: Disable Tx queues when reconfiguring the interface The Tx queues were not disabled in situations where the driver needed to stop the interface to apply a new configuration. This could result in a kernel panic when doing any of the 3 following actions: * reconfiguring the number of queues (ethtool -L) * reconfiguring the size of the ring buffers (ethtool -G) * installing/removing an XDP program (ip l set dev ethX xdp) Prevent the panic by making sure netif_tx_disable is called when stopping an interface. Without this patch, the following kernel panic can be observed when doing any of the actions above: Unable to handle kernel paging request at virtual address ffff80001238d040 [....] Call trace: dwmac4_set_addr+0x8/0x10 dev_hard_start_xmit+0xe4/0x1ac sch_direct_xmit+0xe8/0x39c __dev_queue_xmit+0x3ec/0xaf0 dev_queue_xmit+0x14/0x20 [...] [ end trace 0000000000000002 ]--- 2024-06-14 CVE-2021-47558 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: ice: Fix crash by keep old cfg when update TCs more than queues There are problems if allocated queues less than Traffic Classes. Commit a632b2a4c920 ("ice: ethtool: Prohibit improper channel config for DCB") already disallow setting less queues than TCs. Another case is if we first set less queues, and later update more TCs config due to LLDP, ice_vsi_cfg_tc() will failed but left dirty num_txq/rxq and tc_cfg in vsi, that will cause invalid pointer access. [ 95.968089] ice 0000:3b:00.1: More TCs defined than queues/rings allocated. [ 95.968092] ice 0000:3b:00.1: Trying to use more Rx queues (8), than were allocated (1)! [ 95.968093] ice 0000:3b:00.1: Failed to config TC for VSI index: 0 [ 95.969621] general protection fault: 0000 [#1] SMP NOPTI [ 95.969705] CPU: 1 PID: 58405 Comm: lldpad Kdump: loaded Tainted: G U W O --------- -t - 4.18.0 #1 [ 95.969867] Hardware name: O.E.M/BC11SPSCB10, BIOS 8.23 12/30/2021 [ 95.969992] RIP: 0010:devm_kmalloc+0xa/0x60 [ 95.970052] Code: 5c ff ff ff 31 c0 5b 5d 41 5c c3 b8 f4 ff ff ff eb f4 0f 1f 40 00 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 48 89 f8 89 d1 <8b> 97 60 02 00 00 48 8d 7e 18 48 39 f7 72 3f 55 89 ce 53 48 8b 4c [ 95.970344] RSP: 0018:ffffc9003f553888 EFLAGS: 00010206 [ 95.970425] RAX: dead000000000200 RBX: ffffea003c425b00 RCX: 00000000006080c0 [ 95.970536] RDX: 00000000006080c0 RSI: 0000000000000200 RDI: dead000000000200 [ 95.970648] RBP: dead000000000200 R08: 00000000000463c0 R09: ffff888ffa900000 [ 95.970760] R10: 0000000000000000 R11: 0000000000000002 R12: ffff888ff6b40100 [ 95.970870] R13: ffff888ff6a55018 R14: 0000000000000000 R15: ffff888ff6a55460 [ 95.970981] FS: 00007f51b7d24700(0000) GS:ffff88903ee80000(0000) knlGS:0000000000000000 [ 95.971108] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 95.971197] CR2: 00007fac5410d710 CR3: 0000000f2c1de002 CR4: 00000000007606e0 [ 95.971309] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 95.971419] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 95.971530] PKRU: 55555554 [ 95.971573] Call Trace: [ 95.971622] ice_setup_rx_ring+0x39/0x110 [ice] [ 95.971695] ice_vsi_setup_rx_rings+0x54/0x90 [ice] [ 95.971774] ice_vsi_open+0x25/0x120 [ice] [ 95.971843] ice_open_internal+0xb8/0x1f0 [ice] [ 95.971919] ice_ena_vsi+0x4f/0xd0 [ice] [ 95.971987] ice_dcb_ena_dis_vsi.constprop.5+0x29/0x90 [ice] [ 95.972082] ice_pf_dcb_cfg+0x29a/0x380 [ice] [ 95.972154] ice_dcbnl_setets+0x174/0x1b0 [ice] [ 95.972220] dcbnl_ieee_set+0x89/0x230 [ 95.972279] ? dcbnl_ieee_del+0x150/0x150 [ 95.972341] dcb_doit+0x124/0x1b0 [ 95.972392] rtnetlink_rcv_msg+0x243/0x2f0 [ 95.972457] ? dcb_doit+0x14d/0x1b0 [ 95.972510] ? __kmalloc_node_track_caller+0x1d3/0x280 [ 95.972591] ? rtnl_calcit.isra.31+0x100/0x100 [ 95.972661] netlink_rcv_skb+0xcf/0xf0 [ 95.972720] netlink_unicast+0x16d/0x220 [ 95.972781] netlink_sendmsg+0x2ba/0x3a0 [ 95.975891] sock_sendmsg+0x4c/0x50 [ 95.979032] ___sys_sendmsg+0x2e4/0x300 [ 95.982147] ? kmem_cache_alloc+0x13e/0x190 [ 95.985242] ? __wake_up_common_lock+0x79/0x90 [ 95.988338] ? __check_object_size+0xac/0x1b0 [ 95.991440] ? _copy_to_user+0x22/0x30 [ 95.994539] ? move_addr_to_user+0xbb/0xd0 [ 95.997619] ? __sys_sendmsg+0x53/0x80 [ 96.000664] __sys_sendmsg+0x53/0x80 [ 96.003747] do_syscall_64+0x5b/0x1d0 [ 96.006862] entry_SYSCALL_64_after_hwframe+0x65/0xca Only update num_txq/rxq when passed check, and restore tc_cfg if setup queue map failed. 2024-06-14 CVE-2022-48652 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: aio: fix mremap after fork null-deref Commit e4a0d3e720e7 ("aio: Make it possible to remap aio ring") introduced a null-deref if mremap is called on an old aio mapping after fork as mm->ioctx_table will be set to NULL. [jmoyer@redhat.com: fix 80 column issue] 2024-06-14 CVE-2023-52646 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: riscv: Check if the code to patch lies in the exit section Otherwise we fall through to vmalloc_to_page() which panics since the address does not lie in the vmalloc region. 2024-06-14 CVE-2023-52677 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: ALSA: scarlett2: Add missing error checks to *_ctl_get() The *_ctl_get() functions which call scarlett2_update_*() were not checking the return value. Fix to check the return value and pass to the caller. 2024-06-14 CVE-2023-52680 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: powerpc/powernv: Add a null pointer check in opal_event_init() kasprintf() returns a pointer to dynamically allocated memory which can be NULL upon failure. 2024-06-14 CVE-2023-52686 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: net: openvswitch: fix possible memory leak in ovs_meter_cmd_set() old_meter needs to be free after it is detached regardless of whether the new meter is successfully attached. 2024-06-14 CVE-2023-52702 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix underflow in second superblock position calculations Macro NILFS_SB2_OFFSET_BYTES, which computes the position of the second superblock, underflows when the argument device size is less than 4096 bytes. Therefore, when using this macro, it is necessary to check in advance that the device size is not less than a lower limit, or at least that underflow does not occur. The current nilfs2 implementation lacks this check, causing out-of-bound block access when mounting devices smaller than 4096 bytes: I/O error, dev loop0, sector 36028797018963960 op 0x0:(READ) flags 0x0 phys_seg 1 prio class 2 NILFS (loop0): unable to read secondary superblock (blocksize = 1024) In addition, when trying to resize the filesystem to a size below 4096 bytes, this underflow occurs in nilfs_resize_fs(), passing a huge number of segments to nilfs_sufile_resize(), corrupting parameters such as the number of segments in superblocks. This causes excessive loop iterations in nilfs_sufile_resize() during a subsequent resize ioctl, causing semaphore ns_segctor_sem to block for a long time and hang the writer thread: INFO: task segctord:5067 blocked for more than 143 seconds. Not tainted 6.2.0-rc8-syzkaller-00015-gf6feea56f66d #0 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:segctord state:D stack:23456 pid:5067 ppid:2 flags:0x00004000 Call Trace: <TASK> context_switch kernel/sched/core.c:5293 [inline] __schedule+0x1409/0x43f0 kernel/sched/core.c:6606 schedule+0xc3/0x190 kernel/sched/core.c:6682 rwsem_down_write_slowpath+0xfcf/0x14a0 kernel/locking/rwsem.c:1190 nilfs_transaction_lock+0x25c/0x4f0 fs/nilfs2/segment.c:357 nilfs_segctor_thread_construct fs/nilfs2/segment.c:2486 [inline] nilfs_segctor_thread+0x52f/0x1140 fs/nilfs2/segment.c:2570 kthread+0x270/0x300 kernel/kthread.c:376 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:308 </TASK> ... Call Trace: <TASK> folio_mark_accessed+0x51c/0xf00 mm/swap.c:515 __nilfs_get_page_block fs/nilfs2/page.c:42 [inline] nilfs_grab_buffer+0x3d3/0x540 fs/nilfs2/page.c:61 nilfs_mdt_submit_block+0xd7/0x8f0 fs/nilfs2/mdt.c:121 nilfs_mdt_read_block+0xeb/0x430 fs/nilfs2/mdt.c:176 nilfs_mdt_get_block+0x12d/0xbb0 fs/nilfs2/mdt.c:251 nilfs_sufile_get_segment_usage_block fs/nilfs2/sufile.c:92 [inline] nilfs_sufile_truncate_range fs/nilfs2/sufile.c:679 [inline] nilfs_sufile_resize+0x7a3/0x12b0 fs/nilfs2/sufile.c:777 nilfs_resize_fs+0x20c/0xed0 fs/nilfs2/super.c:422 nilfs_ioctl_resize fs/nilfs2/ioctl.c:1033 [inline] nilfs_ioctl+0x137c/0x2440 fs/nilfs2/ioctl.c:1301 ... This fixes these issues by inserting appropriate minimum device size checks or anti-underflow checks, depending on where the macro is used. 2024-06-14 CVE-2023-52705 openEuler-22.03-LTS-SP1 Low 0.0 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: IB/IPoIB: Fix legacy IPoIB due to wrong number of queues The cited commit creates child PKEY interfaces over netlink will multiple tx and rx queues, but some devices doesn't support more than 1 tx and 1 rx queues. This causes to a crash when traffic is sent over the PKEY interface due to the parent having a single queue but the child having multiple queues. This patch fixes the number of queues to 1 for legacy IPoIB at the earliest possible point in time. BUG: kernel NULL pointer dereference, address: 000000000000036b PGD 0 P4D 0 Oops: 0000 [#1] SMP CPU: 4 PID: 209665 Comm: python3 Not tainted 6.1.0_for_upstream_min_debug_2022_12_12_17_02 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:kmem_cache_alloc+0xcb/0x450 Code: ce 7e 49 8b 50 08 49 83 78 10 00 4d 8b 28 0f 84 cb 02 00 00 4d 85 ed 0f 84 c2 02 00 00 41 8b 44 24 28 48 8d 4a 01 49 8b 3c 24 <49> 8b 5c 05 00 4c 89 e8 65 48 0f c7 0f 0f 94 c0 84 c0 74 b8 41 8b RSP: 0018:ffff88822acbbab8 EFLAGS: 00010202 RAX: 0000000000000070 RBX: ffff8881c28e3e00 RCX: 00000000064f8dae RDX: 00000000064f8dad RSI: 0000000000000a20 RDI: 0000000000030d00 RBP: 0000000000000a20 R08: ffff8882f5d30d00 R09: ffff888104032f40 R10: ffff88810fade828 R11: 736f6d6570736575 R12: ffff88810081c000 R13: 00000000000002fb R14: ffffffff817fc865 R15: 0000000000000000 FS: 00007f9324ff9700(0000) GS:ffff8882f5d00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000000000000036b CR3: 00000001125af004 CR4: 0000000000370ea0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> skb_clone+0x55/0xd0 ip6_finish_output2+0x3fe/0x690 ip6_finish_output+0xfa/0x310 ip6_send_skb+0x1e/0x60 udp_v6_send_skb+0x1e5/0x420 udpv6_sendmsg+0xb3c/0xe60 ? ip_mc_finish_output+0x180/0x180 ? __switch_to_asm+0x3a/0x60 ? __switch_to_asm+0x34/0x60 sock_sendmsg+0x33/0x40 __sys_sendto+0x103/0x160 ? _copy_to_user+0x21/0x30 ? kvm_clock_get_cycles+0xd/0x10 ? ktime_get_ts64+0x49/0xe0 __x64_sys_sendto+0x25/0x30 do_syscall_64+0x3d/0x90 entry_SYSCALL_64_after_hwframe+0x46/0xb0 RIP: 0033:0x7f9374f1ed14 Code: 42 41 f8 ff 44 8b 4c 24 2c 4c 8b 44 24 20 89 c5 44 8b 54 24 28 48 8b 54 24 18 b8 2c 00 00 00 48 8b 74 24 10 8b 7c 24 08 0f 05 <48> 3d 00 f0 ff ff 77 34 89 ef 48 89 44 24 08 e8 68 41 f8 ff 48 8b RSP: 002b:00007f9324ff7bd0 EFLAGS: 00000293 ORIG_RAX: 000000000000002c RAX: ffffffffffffffda RBX: 00007f9324ff7cc8 RCX: 00007f9374f1ed14 RDX: 00000000000002fb RSI: 00007f93000052f0 RDI: 0000000000000030 RBP: 0000000000000000 R08: 00007f9324ff7d40 R09: 000000000000001c R10: 0000000000000000 R11: 0000000000000293 R12: 0000000000000000 R13: 000000012a05f200 R14: 0000000000000001 R15: 00007f9374d57bdc </TASK> 2024-06-14 CVE-2023-52745 openEuler-22.03-LTS-SP1 Low 0.0 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: xfrm/compat: prevent potential spectre v1 gadget in xfrm_xlate32_attr() int type = nla_type(nla); if (type > XFRMA_MAX) { return -EOPNOTSUPP; } @type is then used as an array index and can be used as a Spectre v1 gadget. if (nla_len(nla) < compat_policy[type].len) { array_index_nospec() can be used to prevent leaking content of kernel memory to malicious users. 2024-06-14 CVE-2023-52746 openEuler-22.03-LTS-SP1 Low 0.0 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved:drm/amd/display: Avoid NULL dereference of timing generator[Why & How]Check whether assigned timing generator is NULL or not beforeaccessing its funcs to prevent NULL dereference. 2024-06-14 CVE-2023-52753 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: net/smc: avoid data corruption caused by decline We found a data corruption issue during testing of SMC-R on Redis applications. The benchmark has a low probability of reporting a strange error as shown below. "Error: Protocol error, got "\xe2" as reply type byte" Finally, we found that the retrieved error data was as follows: 0xE2 0xD4 0xC3 0xD9 0x04 0x00 0x2C 0x20 0xA6 0x56 0x00 0x16 0x3E 0x0C 0xCB 0x04 0x02 0x01 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0xE2 It is quite obvious that this is a SMC DECLINE message, which means that the applications received SMC protocol message. We found that this was caused by the following situations: client server ¦ clc proposal -------------> ¦ clc accept <------------- ¦ clc confirm -------------> wait llc confirm send llc confirm ¦failed llc confirm ¦ x------ (after 2s)timeout wait llc confirm rsp wait decline (after 1s) timeout (after 2s) timeout ¦ decline --------------> ¦ decline <-------------- As a result, a decline message was sent in the implementation, and this message was read from TCP by the already-fallback connection. This patch double the client timeout as 2x of the server value, With this simple change, the Decline messages should never cross or collide (during Confirm link timeout). This issue requires an immediate solution, since the protocol updates involve a more long-term solution. 2024-06-14 CVE-2023-52775 openEuler-22.03-LTS-SP1 Medium 5.9 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: ipvlan: add ipvlan_route_v6_outbound() helper Inspired by syzbot reports using a stack of multiple ipvlan devices. Reduce stack size needed in ipvlan_process_v6_outbound() by moving the flowi6 struct used for the route lookup in an non inlined helper. ipvlan_route_v6_outbound() needs 120 bytes on the stack, immediately reclaimed. Also make sure ipvlan_process_v4_outbound() is not inlined. We might also have to lower MAX_NEST_DEV, because only syzbot uses setups with more than four stacked devices. BUG: TASK stack guard page was hit at ffffc9000e803ff8 (stack is ffffc9000e804000..ffffc9000e808000) stack guard page: 0000 [#1] SMP KASAN CPU: 0 PID: 13442 Comm: syz-executor.4 Not tainted 6.1.52-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/09/2023 RIP: 0010:kasan_check_range+0x4/0x2a0 mm/kasan/generic.c:188 Code: 48 01 c6 48 89 c7 e8 db 4e c1 03 31 c0 5d c3 cc 0f 0b eb 02 0f 0b b8 ea ff ff ff 5d c3 cc 00 00 cc cc 00 00 cc cc 55 48 89 e5 <41> 57 41 56 41 55 41 54 53 b0 01 48 85 f6 0f 84 a4 01 00 00 48 89 RSP: 0018:ffffc9000e804000 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffff817e5bf2 RDX: 0000000000000000 RSI: 0000000000000008 RDI: ffffffff887c6568 RBP: ffffc9000e804000 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: dffffc0000000001 R12: 1ffff92001d0080c R13: dffffc0000000000 R14: ffffffff87e6b100 R15: 0000000000000000 FS: 00007fd0c55826c0(0000) GS:ffff8881f6800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffc9000e803ff8 CR3: 0000000170ef7000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <#DF> </#DF> <TASK> [<ffffffff81f281d1>] __kasan_check_read+0x11/0x20 mm/kasan/shadow.c:31 [<ffffffff817e5bf2>] instrument_atomic_read include/linux/instrumented.h:72 [inline] [<ffffffff817e5bf2>] _test_bit include/asm-generic/bitops/instrumented-non-atomic.h:141 [inline] [<ffffffff817e5bf2>] cpumask_test_cpu include/linux/cpumask.h:506 [inline] [<ffffffff817e5bf2>] cpu_online include/linux/cpumask.h:1092 [inline] [<ffffffff817e5bf2>] trace_lock_acquire include/trace/events/lock.h:24 [inline] [<ffffffff817e5bf2>] lock_acquire+0xe2/0x590 kernel/locking/lockdep.c:5632 [<ffffffff8563221e>] rcu_lock_acquire+0x2e/0x40 include/linux/rcupdate.h:306 [<ffffffff8561464d>] rcu_read_lock include/linux/rcupdate.h:747 [inline] [<ffffffff8561464d>] ip6_pol_route+0x15d/0x1440 net/ipv6/route.c:2221 [<ffffffff85618120>] ip6_pol_route_output+0x50/0x80 net/ipv6/route.c:2606 [<ffffffff856f65b5>] pol_lookup_func include/net/ip6_fib.h:584 [inline] [<ffffffff856f65b5>] fib6_rule_lookup+0x265/0x620 net/ipv6/fib6_rules.c:116 [<ffffffff85618009>] ip6_route_output_flags_noref+0x2d9/0x3a0 net/ipv6/route.c:2638 [<ffffffff8561821a>] ip6_route_output_flags+0xca/0x340 net/ipv6/route.c:2651 [<ffffffff838bd5a3>] ip6_route_output include/net/ip6_route.h:100 [inline] [<ffffffff838bd5a3>] ipvlan_process_v6_outbound drivers/net/ipvlan/ipvlan_core.c:473 [inline] [<ffffffff838bd5a3>] ipvlan_process_outbound drivers/net/ipvlan/ipvlan_core.c:529 [inline] [<ffffffff838bd5a3>] ipvlan_xmit_mode_l3 drivers/net/ipvlan/ipvlan_core.c:602 [inline] [<ffffffff838bd5a3>] ipvlan_queue_xmit+0xc33/0x1be0 drivers/net/ipvlan/ipvlan_core.c:677 [<ffffffff838c2909>] ipvlan_start_xmit+0x49/0x100 drivers/net/ipvlan/ipvlan_main.c:229 [<ffffffff84d03900>] netdev_start_xmit include/linux/netdevice.h:4966 [inline] [<ffffffff84d03900>] xmit_one net/core/dev.c:3644 [inline] [<ffffffff84d03900>] dev_hard_start_xmit+0x320/0x980 net/core/dev.c:3660 [<ffffffff84d080e2>] __dev_queue_xmit+0x16b2/0x3370 net/core/dev.c:4324 [<ffffffff855ce4cd>] dev_queue_xmit include/linux/netdevice.h:3067 [inline] [<ffffffff855ce4cd>] neigh_hh_output include/net/neighbour.h:529 [inline] [<f ---truncated--- 2024-06-14 CVE-2023-52796 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: wifi: ath11k: fix dfs radar event locking The ath11k active pdevs are protected by RCU but the DFS radar event handling code calling ath11k_mac_get_ar_by_pdev_id() was not marked as a read-side critical section. Mark the code in question as an RCU read-side critical section to avoid any potential use-after-free issues. Compile tested only. 2024-06-14 CVE-2023-52798 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: jfs: fix array-index-out-of-bounds in dbFindLeaf Currently while searching for dmtree_t for sufficient free blocks there is an array out of bounds while getting element in tp->dm_stree. To add the required check for out of bound we first need to determine the type of dmtree. Thus added an extra parameter to dbFindLeaf so that the type of tree can be determined and the required check can be applied. 2024-06-14 CVE-2023-52799 openEuler-22.03-LTS-SP1 Low 0.0 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: wifi: ath11k: fix htt pktlog locking The ath11k active pdevs are protected by RCU but the htt pktlog handling code calling ath11k_mac_get_ar_by_pdev_id() was not marked as a read-side critical section. Mark the code in question as an RCU read-side critical section to avoid any potential use-after-free issues. Compile tested only. 2024-06-14 CVE-2023-52800 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: SUNRPC: Fix RPC client cleaned up the freed pipefs dentries RPC client pipefs dentries cleanup is in separated rpc_remove_pipedir() workqueue,which takes care about pipefs superblock locking. In some special scenarios, when kernel frees the pipefs sb of the current client and immediately alloctes a new pipefs sb, rpc_remove_pipedir function would misjudge the existence of pipefs sb which is not the one it used to hold. As a result, the rpc_remove_pipedir would clean the released freed pipefs dentries. To fix this issue, rpc_remove_pipedir should check whether the current pipefs sb is consistent with the original pipefs sb. This error can be catched by KASAN: ========================================================= [ 250.497700] BUG: KASAN: slab-use-after-free in dget_parent+0x195/0x200 [ 250.498315] Read of size 4 at addr ffff88800a2ab804 by task kworker/0:18/106503 [ 250.500549] Workqueue: events rpc_free_client_work [ 250.501001] Call Trace: [ 250.502880] kasan_report+0xb6/0xf0 [ 250.503209] ? dget_parent+0x195/0x200 [ 250.503561] dget_parent+0x195/0x200 [ 250.503897] ? __pfx_rpc_clntdir_depopulate+0x10/0x10 [ 250.504384] rpc_rmdir_depopulate+0x1b/0x90 [ 250.504781] rpc_remove_client_dir+0xf5/0x150 [ 250.505195] rpc_free_client_work+0xe4/0x230 [ 250.505598] process_one_work+0x8ee/0x13b0 ... [ 22.039056] Allocated by task 244: [ 22.039390] kasan_save_stack+0x22/0x50 [ 22.039758] kasan_set_track+0x25/0x30 [ 22.040109] __kasan_slab_alloc+0x59/0x70 [ 22.040487] kmem_cache_alloc_lru+0xf0/0x240 [ 22.040889] __d_alloc+0x31/0x8e0 [ 22.041207] d_alloc+0x44/0x1f0 [ 22.041514] __rpc_lookup_create_exclusive+0x11c/0x140 [ 22.041987] rpc_mkdir_populate.constprop.0+0x5f/0x110 [ 22.042459] rpc_create_client_dir+0x34/0x150 [ 22.042874] rpc_setup_pipedir_sb+0x102/0x1c0 [ 22.043284] rpc_client_register+0x136/0x4e0 [ 22.043689] rpc_new_client+0x911/0x1020 [ 22.044057] rpc_create_xprt+0xcb/0x370 [ 22.044417] rpc_create+0x36b/0x6c0 ... [ 22.049524] Freed by task 0: [ 22.049803] kasan_save_stack+0x22/0x50 [ 22.050165] kasan_set_track+0x25/0x30 [ 22.050520] kasan_save_free_info+0x2b/0x50 [ 22.050921] __kasan_slab_free+0x10e/0x1a0 [ 22.051306] kmem_cache_free+0xa5/0x390 [ 22.051667] rcu_core+0x62c/0x1930 [ 22.051995] __do_softirq+0x165/0x52a [ 22.052347] [ 22.052503] Last potentially related work creation: [ 22.052952] kasan_save_stack+0x22/0x50 [ 22.053313] __kasan_record_aux_stack+0x8e/0xa0 [ 22.053739] __call_rcu_common.constprop.0+0x6b/0x8b0 [ 22.054209] dentry_free+0xb2/0x140 [ 22.054540] __dentry_kill+0x3be/0x540 [ 22.054900] shrink_dentry_list+0x199/0x510 [ 22.055293] shrink_dcache_parent+0x190/0x240 [ 22.055703] do_one_tree+0x11/0x40 [ 22.056028] shrink_dcache_for_umount+0x61/0x140 [ 22.056461] generic_shutdown_super+0x70/0x590 [ 22.056879] kill_anon_super+0x3a/0x60 [ 22.057234] rpc_kill_sb+0x121/0x200 2024-06-14 CVE-2023-52803 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: net: hns3: fix out-of-bounds access may occur when coalesce info is read via debugfs The hns3 driver define an array of string to show the coalesce info, but if the kernel adds a new mode or a new state, out-of-bounds access may occur when coalesce info is read via debugfs, this patch fix the problem. 2024-06-14 CVE-2023-52807 openEuler-22.03-LTS-SP1 Low 0.0 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: clk: mediatek: clk-mt6797: Add check for mtk_alloc_clk_data Add the check for the return value of mtk_alloc_clk_data() in order to avoid NULL pointer dereference. 2024-06-14 CVE-2023-52865 openEuler-22.03-LTS-SP1 Medium 4.7 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: clk: mediatek: clk-mt2701: Add check for mtk_alloc_clk_data Add the check for the return value of mtk_alloc_clk_data() in order to avoid NULL pointer dereference. 2024-06-14 CVE-2023-52875 openEuler-22.03-LTS-SP1 Medium 4.1 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: xen-netfront: Add missing skb_mark_for_recycle Notice that skb_mark_for_recycle() is introduced later than fixes tag in commit 6a5bcd84e886 ("page_pool: Allow drivers to hint on SKB recycling"). It is believed that fixes tag were missing a call to page_pool_release_page() between v5.9 to v5.14, after which is should have used skb_mark_for_recycle(). Since v6.6 the call page_pool_release_page() were removed (in commit 535b9c61bdef ("net: page_pool: hide page_pool_release_page()") and remaining callers converted (in commit 6bfef2ec0172 ("Merge branch 'net-page_pool-remove-page_pool_release_page'")). This leak became visible in v6.8 via commit dba1b8a7ab68 ("mm/page_pool: catch page_pool memory leaks"). 2024-06-14 CVE-2024-27393 openEuler-22.03-LTS-SP1 Medium 4.0 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: l2cap: fix null-ptr-deref in l2cap_chan_timeout There is a race condition between l2cap_chan_timeout() and l2cap_chan_del(). When we use l2cap_chan_del() to delete the channel, the chan->conn will be set to null. But the conn could be dereferenced again in the mutex_lock() of l2cap_chan_timeout(). As a result the null pointer dereference bug will happen. The KASAN report triggered by POC is shown below: [ 472.074580] ================================================================== [ 472.075284] BUG: KASAN: null-ptr-deref in mutex_lock+0x68/0xc0 [ 472.075308] Write of size 8 at addr 0000000000000158 by task kworker/0:0/7 [ 472.075308] [ 472.075308] CPU: 0 PID: 7 Comm: kworker/0:0 Not tainted 6.9.0-rc5-00356-g78c0094a146b #36 [ 472.075308] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu4 [ 472.075308] Workqueue: events l2cap_chan_timeout [ 472.075308] Call Trace: [ 472.075308] <TASK> [ 472.075308] dump_stack_lvl+0x137/0x1a0 [ 472.075308] print_report+0x101/0x250 [ 472.075308] ? __virt_addr_valid+0x77/0x160 [ 472.075308] ? mutex_lock+0x68/0xc0 [ 472.075308] kasan_report+0x139/0x170 [ 472.075308] ? mutex_lock+0x68/0xc0 [ 472.075308] kasan_check_range+0x2c3/0x2e0 [ 472.075308] mutex_lock+0x68/0xc0 [ 472.075308] l2cap_chan_timeout+0x181/0x300 [ 472.075308] process_one_work+0x5d2/0xe00 [ 472.075308] worker_thread+0xe1d/0x1660 [ 472.075308] ? pr_cont_work+0x5e0/0x5e0 [ 472.075308] kthread+0x2b7/0x350 [ 472.075308] ? pr_cont_work+0x5e0/0x5e0 [ 472.075308] ? kthread_blkcg+0xd0/0xd0 [ 472.075308] ret_from_fork+0x4d/0x80 [ 472.075308] ? kthread_blkcg+0xd0/0xd0 [ 472.075308] ret_from_fork_asm+0x11/0x20 [ 472.075308] </TASK> [ 472.075308] ================================================================== [ 472.094860] Disabling lock debugging due to kernel taint [ 472.096136] BUG: kernel NULL pointer dereference, address: 0000000000000158 [ 472.096136] #PF: supervisor write access in kernel mode [ 472.096136] #PF: error_code(0x0002) - not-present page [ 472.096136] PGD 0 P4D 0 [ 472.096136] Oops: 0002 [#1] PREEMPT SMP KASAN NOPTI [ 472.096136] CPU: 0 PID: 7 Comm: kworker/0:0 Tainted: G B 6.9.0-rc5-00356-g78c0094a146b #36 [ 472.096136] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu4 [ 472.096136] Workqueue: events l2cap_chan_timeout [ 472.096136] RIP: 0010:mutex_lock+0x88/0xc0 [ 472.096136] Code: be 08 00 00 00 e8 f8 23 1f fd 4c 89 f7 be 08 00 00 00 e8 eb 23 1f fd 42 80 3c 23 00 74 08 48 88 [ 472.096136] RSP: 0018:ffff88800744fc78 EFLAGS: 00000246 [ 472.096136] RAX: 0000000000000000 RBX: 1ffff11000e89f8f RCX: ffffffff8457c865 [ 472.096136] RDX: 0000000000000001 RSI: 0000000000000008 RDI: ffff88800744fc78 [ 472.096136] RBP: 0000000000000158 R08: ffff88800744fc7f R09: 1ffff11000e89f8f [ 472.096136] R10: dffffc0000000000 R11: ffffed1000e89f90 R12: dffffc0000000000 [ 472.096136] R13: 0000000000000158 R14: ffff88800744fc78 R15: ffff888007405a00 [ 472.096136] FS: 0000000000000000(0000) GS:ffff88806d200000(0000) knlGS:0000000000000000 [ 472.096136] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 472.096136] CR2: 0000000000000158 CR3: 000000000da32000 CR4: 00000000000006f0 [ 472.096136] Call Trace: [ 472.096136] <TASK> [ 472.096136] ? __die_body+0x8d/0xe0 [ 472.096136] ? page_fault_oops+0x6b8/0x9a0 [ 472.096136] ? kernelmode_fixup_or_oops+0x20c/0x2a0 [ 472.096136] ? do_user_addr_fault+0x1027/0x1340 [ 472.096136] ? _printk+0x7a/0xa0 [ 472.096136] ? mutex_lock+0x68/0xc0 [ 472.096136] ? add_taint+0x42/0xd0 [ 472.096136] ? exc_page_fault+0x6a/0x1b0 [ 472.096136] ? asm_exc_page_fault+0x26/0x30 [ 472.096136] ? mutex_lock+0x75/0xc0 [ 472.096136] ? mutex_lock+0x88/0xc0 [ 472.096136] ? mutex_lock+0x75/0xc0 [ 472.096136] l2cap_chan_timeo ---truncated--- 2024-06-14 CVE-2024-27399 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: phonet/pep: fix racy skb_queue_empty() use The receive queues are protected by their respective spin-lock, not the socket lock. This could lead to skb_peek() unexpectedly returning NULL or a pointer to an already dequeued socket buffer. 2024-06-14 CVE-2024-27402 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: netfilter: bridge: confirm multicast packets before passing them up the stack conntrack nf_confirm logic cannot handle cloned skbs referencing the same nf_conn entry, which will happen for multicast (broadcast) frames on bridges. Example: macvlan0 | br0 / \ ethX ethY ethX (or Y) receives a L2 multicast or broadcast packet containing an IP packet, flow is not yet in conntrack table. 1. skb passes through bridge and fake-ip (br_netfilter)Prerouting. -> skb->_nfct now references a unconfirmed entry 2. skb is broad/mcast packet. bridge now passes clones out on each bridge interface. 3. skb gets passed up the stack. 4. In macvlan case, macvlan driver retains clone(s) of the mcast skb and schedules a work queue to send them out on the lower devices. The clone skb->_nfct is not a copy, it is the same entry as the original skb. The macvlan rx handler then returns RX_HANDLER_PASS. 5. Normal conntrack hooks (in NF_INET_LOCAL_IN) confirm the orig skb. The Macvlan broadcast worker and normal confirm path will race. This race will not happen if step 2 already confirmed a clone. In that case later steps perform skb_clone() with skb->_nfct already confirmed (in hash table). This works fine. But such confirmation won't happen when eb/ip/nftables rules dropped the packets before they reached the nf_confirm step in postrouting. Pablo points out that nf_conntrack_bridge doesn't allow use of stateful nat, so we can safely discard the nf_conn entry and let inet call conntrack again. This doesn't work for bridge netfilter: skb could have a nat transformation. Also bridge nf prevents re-invocation of inet prerouting via 'sabotage_in' hook. Work around this problem by explicit confirmation of the entry at LOCAL_IN time, before upper layer has a chance to clone the unconfirmed entry. The downside is that this disables NAT and conntrack helpers. Alternative fix would be to add locking to all code parts that deal with unconfirmed packets, but even if that could be done in a sane way this opens up other problems, for example: -m physdev --physdev-out eth0 -j SNAT --snat-to 1.2.3.4 -m physdev --physdev-out eth1 -j SNAT --snat-to 1.2.3.5 For multicast case, only one of such conflicting mappings will be created, conntrack only handles 1:1 NAT mappings. Users should set create a setup that explicitly marks such traffic NOTRACK (conntrack bypass) to avoid this, but we cannot auto-bypass them, ruleset might have accept rules for untracked traffic already, so user-visible behaviour would change. 2024-06-14 CVE-2024-27415 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: usb: typec: altmodes/displayport: create sysfs nodes as driver's default device attribute group The DisplayPort driver's sysfs nodes may be present to the userspace before typec_altmode_set_drvdata() completes in dp_altmode_probe. This means that a sysfs read can trigger a NULL pointer error by deferencing dp->hpd in hpd_show or dp->lock in pin_assignment_show, as dev_get_drvdata() returns NULL in those cases. Remove manual sysfs node creation in favor of adding attribute group as default for devices bound to the driver. The ATTRIBUTE_GROUPS() macro is not used here otherwise the path to the sysfs nodes is no longer compliant with the ABI. 2024-06-14 CVE-2024-35790 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: PCI/PM: Drain runtime-idle callbacks before driver removal A race condition between the .runtime_idle() callback and the .remove() callback in the rtsx_pcr PCI driver leads to a kernel crash due to an unhandled page fault [1]. The problem is that rtsx_pci_runtime_idle() is not expected to be running after pm_runtime_get_sync() has been called, but the latter doesn't really guarantee that. It only guarantees that the suspend and resume callbacks will not be running when it returns. However, if a .runtime_idle() callback is already running when pm_runtime_get_sync() is called, the latter will notice that the runtime PM status of the device is RPM_ACTIVE and it will return right away without waiting for the former to complete. In fact, it cannot wait for .runtime_idle() to complete because it may be called from that callback (it arguably does not make much sense to do that, but it is not strictly prohibited). Thus in general, whoever is providing a .runtime_idle() callback needs to protect it from running in parallel with whatever code runs after pm_runtime_get_sync(). [Note that .runtime_idle() will not start after pm_runtime_get_sync() has returned, but it may continue running then if it has started earlier.] One way to address that race condition is to call pm_runtime_barrier() after pm_runtime_get_sync() (not before it, because a nonzero value of the runtime PM usage counter is necessary to prevent runtime PM callbacks from being invoked) to wait for the .runtime_idle() callback to complete should it be running at that point. A suitable place for doing that is in pci_device_remove() which calls pm_runtime_get_sync() before removing the driver, so it may as well call pm_runtime_barrier() subsequently, which will prevent the race in question from occurring, not just in the rtsx_pcr driver, but in any PCI drivers providing .runtime_idle() callbacks. 2024-06-14 CVE-2024-35809 openEuler-22.03-LTS-SP1 Medium 4.7 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: mlxsw: spectrum_acl_tcam: Fix memory leak during rehash The rehash delayed work migrates filters from one region to another. This is done by iterating over all chunks (all the filters with the same priority) in the region and in each chunk iterating over all the filters. If the migration fails, the code tries to migrate the filters back to the old region. However, the rollback itself can also fail in which case another migration will be erroneously performed. Besides the fact that this ping pong is not a very good idea, it also creates a problem. Each virtual chunk references two chunks: The currently used one ('vchunk->chunk') and a backup ('vchunk->chunk2'). During migration the first holds the chunk we want to migrate filters to and the second holds the chunk we are migrating filters from. The code currently assumes - but does not verify - that the backup chunk does not exist (NULL) if the currently used chunk does not reference the target region. This assumption breaks when we are trying to rollback a rollback, resulting in the backup chunk being overwritten and leaked [1]. Fix by not rolling back a failed rollback and add a warning to avoid future cases. [1] WARNING: CPU: 5 PID: 1063 at lib/parman.c:291 parman_destroy+0x17/0x20 Modules linked in: CPU: 5 PID: 1063 Comm: kworker/5:11 Tainted: G W 6.9.0-rc2-custom-00784-gc6a05c468a0b #14 Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019 Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work RIP: 0010:parman_destroy+0x17/0x20 [...] Call Trace: <TASK> mlxsw_sp_acl_atcam_region_fini+0x19/0x60 mlxsw_sp_acl_tcam_region_destroy+0x49/0xf0 mlxsw_sp_acl_tcam_vregion_rehash_work+0x1f1/0x470 process_one_work+0x151/0x370 worker_thread+0x2cb/0x3e0 kthread+0xd0/0x100 ret_from_fork+0x34/0x50 ret_from_fork_asm+0x1a/0x30 </TASK> 2024-06-14 CVE-2024-35853 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: mlxsw: spectrum_acl_tcam: Fix possible use-after-free during rehash The rehash delayed work migrates filters from one region to another according to the number of available credits. The migrated from region is destroyed at the end of the work if the number of credits is non-negative as the assumption is that this is indicative of migration being complete. This assumption is incorrect as a non-negative number of credits can also be the result of a failed migration. The destruction of a region that still has filters referencing it can result in a use-after-free [1]. Fix by not destroying the region if migration failed. [1] BUG: KASAN: slab-use-after-free in mlxsw_sp_acl_ctcam_region_entry_remove+0x21d/0x230 Read of size 8 at addr ffff8881735319e8 by task kworker/0:31/3858 CPU: 0 PID: 3858 Comm: kworker/0:31 Tainted: G W 6.9.0-rc2-custom-00782-gf2275c2157d8 #5 Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019 Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work Call Trace: <TASK> dump_stack_lvl+0xc6/0x120 print_report+0xce/0x670 kasan_report+0xd7/0x110 mlxsw_sp_acl_ctcam_region_entry_remove+0x21d/0x230 mlxsw_sp_acl_ctcam_entry_del+0x2e/0x70 mlxsw_sp_acl_atcam_entry_del+0x81/0x210 mlxsw_sp_acl_tcam_vchunk_migrate_all+0x3cd/0xb50 mlxsw_sp_acl_tcam_vregion_rehash_work+0x157/0x1300 process_one_work+0x8eb/0x19b0 worker_thread+0x6c9/0xf70 kthread+0x2c9/0x3b0 ret_from_fork+0x4d/0x80 ret_from_fork_asm+0x1a/0x30 </TASK> Allocated by task 174: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 __kasan_kmalloc+0x8f/0xa0 __kmalloc+0x19c/0x360 mlxsw_sp_acl_tcam_region_create+0xdf/0x9c0 mlxsw_sp_acl_tcam_vregion_rehash_work+0x954/0x1300 process_one_work+0x8eb/0x19b0 worker_thread+0x6c9/0xf70 kthread+0x2c9/0x3b0 ret_from_fork+0x4d/0x80 ret_from_fork_asm+0x1a/0x30 Freed by task 7: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 kasan_save_free_info+0x3b/0x60 poison_slab_object+0x102/0x170 __kasan_slab_free+0x14/0x30 kfree+0xc1/0x290 mlxsw_sp_acl_tcam_region_destroy+0x272/0x310 mlxsw_sp_acl_tcam_vregion_rehash_work+0x731/0x1300 process_one_work+0x8eb/0x19b0 worker_thread+0x6c9/0xf70 kthread+0x2c9/0x3b0 ret_from_fork+0x4d/0x80 ret_from_fork_asm+0x1a/0x30 2024-06-14 CVE-2024-35854 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: mlxsw: spectrum_acl_tcam: Fix possible use-after-free during activity update The rule activity update delayed work periodically traverses the list of configured rules and queries their activity from the device. As part of this task it accesses the entry pointed by 'ventry->entry', but this entry can be changed concurrently by the rehash delayed work, leading to a use-after-free [1]. Fix by closing the race and perform the activity query under the 'vregion->lock' mutex. [1] BUG: KASAN: slab-use-after-free in mlxsw_sp_acl_tcam_flower_rule_activity_get+0x121/0x140 Read of size 8 at addr ffff8881054ed808 by task kworker/0:18/181 CPU: 0 PID: 181 Comm: kworker/0:18 Not tainted 6.9.0-rc2-custom-00781-gd5ab772d32f7 #2 Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019 Workqueue: mlxsw_core mlxsw_sp_acl_rule_activity_update_work Call Trace: <TASK> dump_stack_lvl+0xc6/0x120 print_report+0xce/0x670 kasan_report+0xd7/0x110 mlxsw_sp_acl_tcam_flower_rule_activity_get+0x121/0x140 mlxsw_sp_acl_rule_activity_update_work+0x219/0x400 process_one_work+0x8eb/0x19b0 worker_thread+0x6c9/0xf70 kthread+0x2c9/0x3b0 ret_from_fork+0x4d/0x80 ret_from_fork_asm+0x1a/0x30 </TASK> Allocated by task 1039: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 __kasan_kmalloc+0x8f/0xa0 __kmalloc+0x19c/0x360 mlxsw_sp_acl_tcam_entry_create+0x7b/0x1f0 mlxsw_sp_acl_tcam_vchunk_migrate_all+0x30d/0xb50 mlxsw_sp_acl_tcam_vregion_rehash_work+0x157/0x1300 process_one_work+0x8eb/0x19b0 worker_thread+0x6c9/0xf70 kthread+0x2c9/0x3b0 ret_from_fork+0x4d/0x80 ret_from_fork_asm+0x1a/0x30 Freed by task 1039: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 kasan_save_free_info+0x3b/0x60 poison_slab_object+0x102/0x170 __kasan_slab_free+0x14/0x30 kfree+0xc1/0x290 mlxsw_sp_acl_tcam_vchunk_migrate_all+0x3d7/0xb50 mlxsw_sp_acl_tcam_vregion_rehash_work+0x157/0x1300 process_one_work+0x8eb/0x19b0 worker_thread+0x6c9/0xf70 kthread+0x2c9/0x3b0 ret_from_fork+0x4d/0x80 ret_from_fork_asm+0x1a/0x30 2024-06-14 CVE-2024-35855 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: ipv6: Fix infinite recursion in fib6_dump_done(). syzkaller reported infinite recursive calls of fib6_dump_done() during netlink socket destruction. [1] From the log, syzkaller sent an AF_UNSPEC RTM_GETROUTE message, and then the response was generated. The following recvmmsg() resumed the dump for IPv6, but the first call of inet6_dump_fib() failed at kzalloc() due to the fault injection. [0] 12:01:34 executing program 3: r0 = socket$nl_route(0x10, 0x3, 0x0) sendmsg$nl_route(r0, ... snip ...) recvmmsg(r0, ... snip ...) (fail_nth: 8) Here, fib6_dump_done() was set to nlk_sk(sk)->cb.done, and the next call of inet6_dump_fib() set it to nlk_sk(sk)->cb.args[3]. syzkaller stopped receiving the response halfway through, and finally netlink_sock_destruct() called nlk_sk(sk)->cb.done(). fib6_dump_done() calls fib6_dump_end() and nlk_sk(sk)->cb.done() if it is still not NULL. fib6_dump_end() rewrites nlk_sk(sk)->cb.done() by nlk_sk(sk)->cb.args[3], but it has the same function, not NULL, calling itself recursively and hitting the stack guard page. To avoid the issue, let's set the destructor after kzalloc(). [0]: FAULT_INJECTION: forcing a failure. name failslab, interval 1, probability 0, space 0, times 0 CPU: 1 PID: 432110 Comm: syz-executor.3 Not tainted 6.8.0-12821-g537c2e91d354-dirty #11 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 Call Trace: <TASK> dump_stack_lvl (lib/dump_stack.c:117) should_fail_ex (lib/fault-inject.c:52 lib/fault-inject.c:153) should_failslab (mm/slub.c:3733) kmalloc_trace (mm/slub.c:3748 mm/slub.c:3827 mm/slub.c:3992) inet6_dump_fib (./include/linux/slab.h:628 ./include/linux/slab.h:749 net/ipv6/ip6_fib.c:662) rtnl_dump_all (net/core/rtnetlink.c:4029) netlink_dump (net/netlink/af_netlink.c:2269) netlink_recvmsg (net/netlink/af_netlink.c:1988) ____sys_recvmsg (net/socket.c:1046 net/socket.c:2801) ___sys_recvmsg (net/socket.c:2846) do_recvmmsg (net/socket.c:2943) __x64_sys_recvmmsg (net/socket.c:3041 net/socket.c:3034 net/socket.c:3034) [1]: BUG: TASK stack guard page was hit at 00000000f2fa9af1 (stack is 00000000b7912430..000000009a436beb) stack guard page: 0000 [#1] PREEMPT SMP KASAN CPU: 1 PID: 223719 Comm: kworker/1:3 Not tainted 6.8.0-12821-g537c2e91d354-dirty #11 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 Workqueue: events netlink_sock_destruct_work RIP: 0010:fib6_dump_done (net/ipv6/ip6_fib.c:570) Code: 3c 24 e8 f3 e9 51 fd e9 28 fd ff ff 66 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 00 f3 0f 1e fa 41 57 41 56 41 55 41 54 55 48 89 fd <53> 48 8d 5d 60 e8 b6 4d 07 fd 48 89 da 48 b8 00 00 00 00 00 fc ff RSP: 0018:ffffc9000d980000 EFLAGS: 00010293 RAX: 0000000000000000 RBX: ffffffff84405990 RCX: ffffffff844059d3 RDX: ffff8881028e0000 RSI: ffffffff84405ac2 RDI: ffff88810c02f358 RBP: ffff88810c02f358 R08: 0000000000000007 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000224 R12: 0000000000000000 R13: ffff888007c82c78 R14: ffff888007c82c68 R15: ffff888007c82c68 FS: 0000000000000000(0000) GS:ffff88811b100000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffc9000d97fff8 CR3: 0000000102309002 CR4: 0000000000770ef0 PKRU: 55555554 Call Trace: <#DF> </#DF> <TASK> fib6_dump_done (net/ipv6/ip6_fib.c:572 (discriminator 1)) fib6_dump_done (net/ipv6/ip6_fib.c:572 (discriminator 1)) ... fib6_dump_done (net/ipv6/ip6_fib.c:572 (discriminator 1)) fib6_dump_done (net/ipv6/ip6_fib.c:572 (discriminator 1)) netlink_sock_destruct (net/netlink/af_netlink.c:401) __sk_destruct (net/core/sock.c:2177 (discriminator 2)) sk_destruct (net/core/sock.c:2224) __sk_free (net/core/sock.c:2235) sk_free (net/core/sock.c:2246) process_one_work (kernel/workqueue.c:3259) worker_thread (kernel/workqueue.c:3329 kernel/workqueue. ---truncated--- 2024-06-14 CVE-2024-35886 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: erspan: make sure erspan_base_hdr is present in skb->head syzbot reported a problem in ip6erspan_rcv() [1] Issue is that ip6erspan_rcv() (and erspan_rcv()) no longer make sure erspan_base_hdr is present in skb linear part (skb->head) before getting @ver field from it. Add the missing pskb_may_pull() calls. v2: Reload iph pointer in erspan_rcv() after pskb_may_pull() because skb->head might have changed. [1] BUG: KMSAN: uninit-value in pskb_may_pull_reason include/linux/skbuff.h:2742 [inline] BUG: KMSAN: uninit-value in pskb_may_pull include/linux/skbuff.h:2756 [inline] BUG: KMSAN: uninit-value in ip6erspan_rcv net/ipv6/ip6_gre.c:541 [inline] BUG: KMSAN: uninit-value in gre_rcv+0x11f8/0x1930 net/ipv6/ip6_gre.c:610 pskb_may_pull_reason include/linux/skbuff.h:2742 [inline] pskb_may_pull include/linux/skbuff.h:2756 [inline] ip6erspan_rcv net/ipv6/ip6_gre.c:541 [inline] gre_rcv+0x11f8/0x1930 net/ipv6/ip6_gre.c:610 ip6_protocol_deliver_rcu+0x1d4c/0x2ca0 net/ipv6/ip6_input.c:438 ip6_input_finish net/ipv6/ip6_input.c:483 [inline] NF_HOOK include/linux/netfilter.h:314 [inline] ip6_input+0x15d/0x430 net/ipv6/ip6_input.c:492 ip6_mc_input+0xa7e/0xc80 net/ipv6/ip6_input.c:586 dst_input include/net/dst.h:460 [inline] ip6_rcv_finish+0x955/0x970 net/ipv6/ip6_input.c:79 NF_HOOK include/linux/netfilter.h:314 [inline] ipv6_rcv+0xde/0x390 net/ipv6/ip6_input.c:310 __netif_receive_skb_one_core net/core/dev.c:5538 [inline] __netif_receive_skb+0x1da/0xa00 net/core/dev.c:5652 netif_receive_skb_internal net/core/dev.c:5738 [inline] netif_receive_skb+0x58/0x660 net/core/dev.c:5798 tun_rx_batched+0x3ee/0x980 drivers/net/tun.c:1549 tun_get_user+0x5566/0x69e0 drivers/net/tun.c:2002 tun_chr_write_iter+0x3af/0x5d0 drivers/net/tun.c:2048 call_write_iter include/linux/fs.h:2108 [inline] new_sync_write fs/read_write.c:497 [inline] vfs_write+0xb63/0x1520 fs/read_write.c:590 ksys_write+0x20f/0x4c0 fs/read_write.c:643 __do_sys_write fs/read_write.c:655 [inline] __se_sys_write fs/read_write.c:652 [inline] __x64_sys_write+0x93/0xe0 fs/read_write.c:652 do_syscall_64+0xd5/0x1f0 entry_SYSCALL_64_after_hwframe+0x6d/0x75 Uninit was created at: slab_post_alloc_hook mm/slub.c:3804 [inline] slab_alloc_node mm/slub.c:3845 [inline] kmem_cache_alloc_node+0x613/0xc50 mm/slub.c:3888 kmalloc_reserve+0x13d/0x4a0 net/core/skbuff.c:577 __alloc_skb+0x35b/0x7a0 net/core/skbuff.c:668 alloc_skb include/linux/skbuff.h:1318 [inline] alloc_skb_with_frags+0xc8/0xbf0 net/core/skbuff.c:6504 sock_alloc_send_pskb+0xa81/0xbf0 net/core/sock.c:2795 tun_alloc_skb drivers/net/tun.c:1525 [inline] tun_get_user+0x209a/0x69e0 drivers/net/tun.c:1846 tun_chr_write_iter+0x3af/0x5d0 drivers/net/tun.c:2048 call_write_iter include/linux/fs.h:2108 [inline] new_sync_write fs/read_write.c:497 [inline] vfs_write+0xb63/0x1520 fs/read_write.c:590 ksys_write+0x20f/0x4c0 fs/read_write.c:643 __do_sys_write fs/read_write.c:655 [inline] __se_sys_write fs/read_write.c:652 [inline] __x64_sys_write+0x93/0xe0 fs/read_write.c:652 do_syscall_64+0xd5/0x1f0 entry_SYSCALL_64_after_hwframe+0x6d/0x75 CPU: 1 PID: 5045 Comm: syz-executor114 Not tainted 6.9.0-rc1-syzkaller-00021-g962490525cff #0 2024-06-14 CVE-2024-35888 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: bpf, sockmap: Prevent lock inversion deadlock in map delete elem syzkaller started using corpuses where a BPF tracing program deletes elements from a sockmap/sockhash map. Because BPF tracing programs can be invoked from any interrupt context, locks taken during a map_delete_elem operation must be hardirq-safe. Otherwise a deadlock due to lock inversion is possible, as reported by lockdep: CPU0 CPU1 ---- ---- lock(&htab->buckets[i].lock); local_irq_disable(); lock(&host->lock); lock(&htab->buckets[i].lock); <Interrupt> lock(&host->lock); Locks in sockmap are hardirq-unsafe by design. We expects elements to be deleted from sockmap/sockhash only in task (normal) context with interrupts enabled, or in softirq context. Detect when map_delete_elem operation is invoked from a context which is _not_ hardirq-unsafe, that is interrupts are disabled, and bail out with an error. Note that map updates are not affected by this issue. BPF verifier does not allow updating sockmap/sockhash from a BPF tracing program today. 2024-06-14 CVE-2024-35895 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: netfilter: validate user input for expected length I got multiple syzbot reports showing old bugs exposed by BPF after commit 20f2505fb436 ("bpf: Try to avoid kzalloc in cgroup/{s,g}etsockopt") setsockopt() @optlen argument should be taken into account before copying data. BUG: KASAN: slab-out-of-bounds in copy_from_sockptr_offset include/linux/sockptr.h:49 [inline] BUG: KASAN: slab-out-of-bounds in copy_from_sockptr include/linux/sockptr.h:55 [inline] BUG: KASAN: slab-out-of-bounds in do_replace net/ipv4/netfilter/ip_tables.c:1111 [inline] BUG: KASAN: slab-out-of-bounds in do_ipt_set_ctl+0x902/0x3dd0 net/ipv4/netfilter/ip_tables.c:1627 Read of size 96 at addr ffff88802cd73da0 by task syz-executor.4/7238 CPU: 1 PID: 7238 Comm: syz-executor.4 Not tainted 6.9.0-rc2-next-20240403-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:114 print_address_description mm/kasan/report.c:377 [inline] print_report+0x169/0x550 mm/kasan/report.c:488 kasan_report+0x143/0x180 mm/kasan/report.c:601 kasan_check_range+0x282/0x290 mm/kasan/generic.c:189 __asan_memcpy+0x29/0x70 mm/kasan/shadow.c:105 copy_from_sockptr_offset include/linux/sockptr.h:49 [inline] copy_from_sockptr include/linux/sockptr.h:55 [inline] do_replace net/ipv4/netfilter/ip_tables.c:1111 [inline] do_ipt_set_ctl+0x902/0x3dd0 net/ipv4/netfilter/ip_tables.c:1627 nf_setsockopt+0x295/0x2c0 net/netfilter/nf_sockopt.c:101 do_sock_setsockopt+0x3af/0x720 net/socket.c:2311 __sys_setsockopt+0x1ae/0x250 net/socket.c:2334 __do_sys_setsockopt net/socket.c:2343 [inline] __se_sys_setsockopt net/socket.c:2340 [inline] __x64_sys_setsockopt+0xb5/0xd0 net/socket.c:2340 do_syscall_64+0xfb/0x240 entry_SYSCALL_64_after_hwframe+0x72/0x7a RIP: 0033:0x7fd22067dde9 Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 e1 20 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007fd21f9ff0c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000036 RAX: ffffffffffffffda RBX: 00007fd2207abf80 RCX: 00007fd22067dde9 RDX: 0000000000000040 RSI: 0000000000000000 RDI: 0000000000000003 RBP: 00007fd2206ca47a R08: 0000000000000001 R09: 0000000000000000 R10: 0000000020000880 R11: 0000000000000246 R12: 0000000000000000 R13: 000000000000000b R14: 00007fd2207abf80 R15: 00007ffd2d0170d8 </TASK> Allocated by task 7238: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3f/0x80 mm/kasan/common.c:68 poison_kmalloc_redzone mm/kasan/common.c:370 [inline] __kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:387 kasan_kmalloc include/linux/kasan.h:211 [inline] __do_kmalloc_node mm/slub.c:4069 [inline] __kmalloc_noprof+0x200/0x410 mm/slub.c:4082 kmalloc_noprof include/linux/slab.h:664 [inline] __cgroup_bpf_run_filter_setsockopt+0xd47/0x1050 kernel/bpf/cgroup.c:1869 do_sock_setsockopt+0x6b4/0x720 net/socket.c:2293 __sys_setsockopt+0x1ae/0x250 net/socket.c:2334 __do_sys_setsockopt net/socket.c:2343 [inline] __se_sys_setsockopt net/socket.c:2340 [inline] __x64_sys_setsockopt+0xb5/0xd0 net/socket.c:2340 do_syscall_64+0xfb/0x240 entry_SYSCALL_64_after_hwframe+0x72/0x7a The buggy address belongs to the object at ffff88802cd73da0 which belongs to the cache kmalloc-8 of size 8 The buggy address is located 0 bytes inside of allocated 1-byte region [ffff88802cd73da0, ffff88802cd73da1) The buggy address belongs to the physical page: page: refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff88802cd73020 pfn:0x2cd73 flags: 0xfff80000000000(node=0|zone=1|lastcpupid=0xfff) page_type: 0xffffefff(slab) raw: 00fff80000000000 ffff888015041280 dead000000000100 dead000000000122 raw: ffff88802cd73020 000000008080007f 00000001ffffefff 00 ---truncated--- 2024-06-14 CVE-2024-35896 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: bpf: Protect against int overflow for stack access size This patch re-introduces protection against the size of access to stack memory being negative; the access size can appear negative as a result of overflowing its signed int representation. This should not actually happen, as there are other protections along the way, but we should protect against it anyway. One code path was missing such protections (fixed in the previous patch in the series), causing out-of-bounds array accesses in check_stack_range_initialized(). This patch causes the verification of a program with such a non-sensical access size to fail. This check used to exist in a more indirect way, but was inadvertendly removed in a833a17aeac7. 2024-06-14 CVE-2024-35905 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: nfc: nci: Fix uninit-value in nci_dev_up and nci_ntf_packet syzbot reported the following uninit-value access issue [1][2]: nci_rx_work() parses and processes received packet. When the payload length is zero, each message type handler reads uninitialized payload and KMSAN detects this issue. The receipt of a packet with a zero-size payload is considered unexpected, and therefore, such packets should be silently discarded. This patch resolved this issue by checking payload size before calling each message type handler codes. 2024-06-14 CVE-2024-35915 openEuler-22.03-LTS-SP1 Low 0.0 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: usb: typec: ucsi: Limit read size on v1.2 Between UCSI 1.2 and UCSI 2.0, the size of the MESSAGE_IN region was increased from 16 to 256. In order to avoid overflowing reads for older systems, add a mechanism to use the read UCSI version to truncate read sizes on UCSI v1.2. 2024-06-14 CVE-2024-35924 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: block: prevent division by zero in blk_rq_stat_sum() The expression dst->nr_samples + src->nr_samples may have zero value on overflow. It is necessary to add a check to avoid division by zero. Found by Linux Verification Center (linuxtesting.org) with Svace. 2024-06-14 CVE-2024-35925 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: Bluetooth: SCO: Fix not validating setsockopt user input syzbot reported sco_sock_setsockopt() is copying data without checking user input length. BUG: KASAN: slab-out-of-bounds in copy_from_sockptr_offset include/linux/sockptr.h:49 [inline] BUG: KASAN: slab-out-of-bounds in copy_from_sockptr include/linux/sockptr.h:55 [inline] BUG: KASAN: slab-out-of-bounds in sco_sock_setsockopt+0xc0b/0xf90 net/bluetooth/sco.c:893 Read of size 4 at addr ffff88805f7b15a3 by task syz-executor.5/12578 2024-06-14 CVE-2024-35967 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: geneve: fix header validation in geneve[6]_xmit_skb syzbot is able to trigger an uninit-value in geneve_xmit() [1] Problem : While most ip tunnel helpers (like ip_tunnel_get_dsfield()) uses skb_protocol(skb, true), pskb_inet_may_pull() is only using skb->protocol. If anything else than ETH_P_IPV6 or ETH_P_IP is found in skb->protocol, pskb_inet_may_pull() does nothing at all. If a vlan tag was provided by the caller (af_packet in the syzbot case), the network header might not point to the correct location, and skb linear part could be smaller than expected. Add skb_vlan_inet_prepare() to perform a complete mac validation. Use this in geneve for the moment, I suspect we need to adopt this more broadly. v4 - Jakub reported v3 broke l2_tos_ttl_inherit.sh selftest - Only call __vlan_get_protocol() for vlan types. v2,v3 - Addressed Sabrina comments on v1 and v2 [1] BUG: KMSAN: uninit-value in geneve_xmit_skb drivers/net/geneve.c:910 [inline] BUG: KMSAN: uninit-value in geneve_xmit+0x302d/0x5420 drivers/net/geneve.c:1030 geneve_xmit_skb drivers/net/geneve.c:910 [inline] geneve_xmit+0x302d/0x5420 drivers/net/geneve.c:1030 __netdev_start_xmit include/linux/netdevice.h:4903 [inline] netdev_start_xmit include/linux/netdevice.h:4917 [inline] xmit_one net/core/dev.c:3531 [inline] dev_hard_start_xmit+0x247/0xa20 net/core/dev.c:3547 __dev_queue_xmit+0x348d/0x52c0 net/core/dev.c:4335 dev_queue_xmit include/linux/netdevice.h:3091 [inline] packet_xmit+0x9c/0x6c0 net/packet/af_packet.c:276 packet_snd net/packet/af_packet.c:3081 [inline] packet_sendmsg+0x8bb0/0x9ef0 net/packet/af_packet.c:3113 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg+0x30f/0x380 net/socket.c:745 __sys_sendto+0x685/0x830 net/socket.c:2191 __do_sys_sendto net/socket.c:2203 [inline] __se_sys_sendto net/socket.c:2199 [inline] __x64_sys_sendto+0x125/0x1d0 net/socket.c:2199 do_syscall_64+0xd5/0x1f0 entry_SYSCALL_64_after_hwframe+0x6d/0x75 Uninit was created at: slab_post_alloc_hook mm/slub.c:3804 [inline] slab_alloc_node mm/slub.c:3845 [inline] kmem_cache_alloc_node+0x613/0xc50 mm/slub.c:3888 kmalloc_reserve+0x13d/0x4a0 net/core/skbuff.c:577 __alloc_skb+0x35b/0x7a0 net/core/skbuff.c:668 alloc_skb include/linux/skbuff.h:1318 [inline] alloc_skb_with_frags+0xc8/0xbf0 net/core/skbuff.c:6504 sock_alloc_send_pskb+0xa81/0xbf0 net/core/sock.c:2795 packet_alloc_skb net/packet/af_packet.c:2930 [inline] packet_snd net/packet/af_packet.c:3024 [inline] packet_sendmsg+0x722d/0x9ef0 net/packet/af_packet.c:3113 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg+0x30f/0x380 net/socket.c:745 __sys_sendto+0x685/0x830 net/socket.c:2191 __do_sys_sendto net/socket.c:2203 [inline] __se_sys_sendto net/socket.c:2199 [inline] __x64_sys_sendto+0x125/0x1d0 net/socket.c:2199 do_syscall_64+0xd5/0x1f0 entry_SYSCALL_64_after_hwframe+0x6d/0x75 CPU: 0 PID: 5033 Comm: syz-executor346 Not tainted 6.9.0-rc1-syzkaller-00005-g928a87efa423 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 02/29/2024 2024-06-14 CVE-2024-35973 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved:ipv4: check for NULL idev in ip_route_use_hint()syzbot was able to trigger a NULL deref in fib_validate_source()in an old tree [1].It appears the bug exists in latest trees.All calls to __in_dev_get_rcu() must be checked for a NULL result.[1]general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] SMP KASANKASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007]CPU: 2 PID: 3257 Comm: syz-executor.3 Not tainted 5.10.0-syzkaller #0Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014 RIP: 0010:fib_validate_source+0xbf/0x15a0 net/ipv4/fib_frontend.c:425Code: 18 f2 f2 f2 f2 42 c7 44 20 23 f3 f3 f3 f3 48 89 44 24 78 42 c6 44 20 27 f3 e8 5d 88 48 fc 4c 89 e8 48 c1 e8 03 48 89 44 24 18 <42> 80 3c 20 00 74 08 4c 89 ef e8 d2 15 98 fc 48 89 5c 24 10 41 bfRSP: 0018:ffffc900015fee40 EFLAGS: 00010246RAX: 0000000000000000 RBX: ffff88800f7a4000 RCX: ffff88800f4f90c0RDX: 0000000000000000 RSI: 0000000004001eac RDI: ffff8880160c64c0RBP: ffffc900015ff060 R08: 0000000000000000 R09: ffff88800f7a4000R10: 0000000000000002 R11: ffff88800f4f90c0 R12: dffffc0000000000R13: 0000000000000000 R14: 0000000000000000 R15: ffff88800f7a4000FS: 00007f938acfe6c0(0000) GS:ffff888058c00000(0000) knlGS:0000000000000000CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033CR2: 00007f938acddd58 CR3: 000000001248e000 CR4: 0000000000352ef0DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400Call Trace: ip_route_use_hint+0x410/0x9b0 net/ipv4/route.c:2231 ip_rcv_finish_core+0x2c4/0x1a30 net/ipv4/ip_input.c:327 ip_list_rcv_finish net/ipv4/ip_input.c:612 [inline] ip_sublist_rcv+0x3ed/0xe50 net/ipv4/ip_input.c:638 ip_list_rcv+0x422/0x470 net/ipv4/ip_input.c:673 __netif_receive_skb_list_ptype net/core/dev.c:5572 [inline] __netif_receive_skb_list_core+0x6b1/0x890 net/core/dev.c:5620 __netif_receive_skb_list net/core/dev.c:5672 [inline] netif_receive_skb_list_internal+0x9f9/0xdc0 net/core/dev.c:5764 netif_receive_skb_list+0x55/0x3e0 net/core/dev.c:5816 xdp_recv_frames net/bpf/test_run.c:257 [inline] xdp_test_run_batch net/bpf/test_run.c:335 [inline] bpf_test_run_xdp_live+0x1818/0x1d00 net/bpf/test_run.c:363 bpf_prog_test_run_xdp+0x81f/0x1170 net/bpf/test_run.c:1376 bpf_prog_test_run+0x349/0x3c0 kernel/bpf/syscall.c:3736 __sys_bpf+0x45c/0x710 kernel/bpf/syscall.c:5115 __do_sys_bpf kernel/bpf/syscall.c:5201 [inline] __se_sys_bpf kernel/bpf/syscall.c:5199 [inline] __x64_sys_bpf+0x7c/0x90 kernel/bpf/syscall.c:5199 2024-06-14 CVE-2024-36008 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: rtnetlink: Correct nested IFLA_VF_VLAN_LIST attribute validation Each attribute inside a nested IFLA_VF_VLAN_LIST is assumed to be a struct ifla_vf_vlan_info so the size of such attribute needs to be at least of sizeof(struct ifla_vf_vlan_info) which is 14 bytes. The current size validation in do_setvfinfo is against NLA_HDRLEN (4 bytes) which is less than sizeof(struct ifla_vf_vlan_info) so this validation is not enough and a too small attribute might be cast to a struct ifla_vf_vlan_info, this might result in an out of bands read access when accessing the saved (casted) entry in ivvl. 2024-06-14 CVE-2024-36017 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: net: hns3: fix kernel crash when devlink reload during pf initialization The devlink reload process will access the hardware resources, but the register operation is done before the hardware is initialized. So, processing the devlink reload during initialization may lead to kernel crash. This patch fixes this by taking devl_lock during initialization. 2024-06-14 CVE-2024-36021 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: mmc: sdhci-msm: pervent access to suspended controller Generic sdhci code registers LED device and uses host->runtime_suspended flag to protect access to it. The sdhci-msm driver doesn't set this flag, which causes a crash when LED is accessed while controller is runtime suspended. Fix this by setting the flag correctly. 2024-06-14 CVE-2024-36029 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: net: fix out-of-bounds access in ops_init net_alloc_generic is called by net_alloc, which is called without any locking. It reads max_gen_ptrs, which is changed under pernet_ops_rwsem. It is read twice, first to allocate an array, then to set s.len, which is later used to limit the bounds of the array access. It is possible that the array is allocated and another thread is registering a new pernet ops, increments max_gen_ptrs, which is then used to set s.len with a larger than allocated length for the variable array. Fix it by reading max_gen_ptrs only once in net_alloc_generic. If max_gen_ptrs is later incremented, it will be caught in net_assign_generic. 2024-06-14 CVE-2024-36883 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: tipc: fix UAF in error path Sam Page (sam4k) working with Trend Micro Zero Day Initiative reported a UAF in the tipc_buf_append() error path: BUG: KASAN: slab-use-after-free in kfree_skb_list_reason+0x47e/0x4c0 linux/net/core/skbuff.c:1183 Read of size 8 at addr ffff88804d2a7c80 by task poc/8034 CPU: 1 PID: 8034 Comm: poc Not tainted 6.8.2 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-debian-1.16.0-5 04/01/2014 Call Trace: <IRQ> __dump_stack linux/lib/dump_stack.c:88 dump_stack_lvl+0xd9/0x1b0 linux/lib/dump_stack.c:106 print_address_description linux/mm/kasan/report.c:377 print_report+0xc4/0x620 linux/mm/kasan/report.c:488 kasan_report+0xda/0x110 linux/mm/kasan/report.c:601 kfree_skb_list_reason+0x47e/0x4c0 linux/net/core/skbuff.c:1183 skb_release_data+0x5af/0x880 linux/net/core/skbuff.c:1026 skb_release_all linux/net/core/skbuff.c:1094 __kfree_skb linux/net/core/skbuff.c:1108 kfree_skb_reason+0x12d/0x210 linux/net/core/skbuff.c:1144 kfree_skb linux/./include/linux/skbuff.h:1244 tipc_buf_append+0x425/0xb50 linux/net/tipc/msg.c:186 tipc_link_input+0x224/0x7c0 linux/net/tipc/link.c:1324 tipc_link_rcv+0x76e/0x2d70 linux/net/tipc/link.c:1824 tipc_rcv+0x45f/0x10f0 linux/net/tipc/node.c:2159 tipc_udp_recv+0x73b/0x8f0 linux/net/tipc/udp_media.c:390 udp_queue_rcv_one_skb+0xad2/0x1850 linux/net/ipv4/udp.c:2108 udp_queue_rcv_skb+0x131/0xb00 linux/net/ipv4/udp.c:2186 udp_unicast_rcv_skb+0x165/0x3b0 linux/net/ipv4/udp.c:2346 __udp4_lib_rcv+0x2594/0x3400 linux/net/ipv4/udp.c:2422 ip_protocol_deliver_rcu+0x30c/0x4e0 linux/net/ipv4/ip_input.c:205 ip_local_deliver_finish+0x2e4/0x520 linux/net/ipv4/ip_input.c:233 NF_HOOK linux/./include/linux/netfilter.h:314 NF_HOOK linux/./include/linux/netfilter.h:308 ip_local_deliver+0x18e/0x1f0 linux/net/ipv4/ip_input.c:254 dst_input linux/./include/net/dst.h:461 ip_rcv_finish linux/net/ipv4/ip_input.c:449 NF_HOOK linux/./include/linux/netfilter.h:314 NF_HOOK linux/./include/linux/netfilter.h:308 ip_rcv+0x2c5/0x5d0 linux/net/ipv4/ip_input.c:569 __netif_receive_skb_one_core+0x199/0x1e0 linux/net/core/dev.c:5534 __netif_receive_skb+0x1f/0x1c0 linux/net/core/dev.c:5648 process_backlog+0x101/0x6b0 linux/net/core/dev.c:5976 __napi_poll.constprop.0+0xba/0x550 linux/net/core/dev.c:6576 napi_poll linux/net/core/dev.c:6645 net_rx_action+0x95a/0xe90 linux/net/core/dev.c:6781 __do_softirq+0x21f/0x8e7 linux/kernel/softirq.c:553 do_softirq linux/kernel/softirq.c:454 do_softirq+0xb2/0xf0 linux/kernel/softirq.c:441 </IRQ> <TASK> __local_bh_enable_ip+0x100/0x120 linux/kernel/softirq.c:381 local_bh_enable linux/./include/linux/bottom_half.h:33 rcu_read_unlock_bh linux/./include/linux/rcupdate.h:851 __dev_queue_xmit+0x871/0x3ee0 linux/net/core/dev.c:4378 dev_queue_xmit linux/./include/linux/netdevice.h:3169 neigh_hh_output linux/./include/net/neighbour.h:526 neigh_output linux/./include/net/neighbour.h:540 ip_finish_output2+0x169f/0x2550 linux/net/ipv4/ip_output.c:235 __ip_finish_output linux/net/ipv4/ip_output.c:313 __ip_finish_output+0x49e/0x950 linux/net/ipv4/ip_output.c:295 ip_finish_output+0x31/0x310 linux/net/ipv4/ip_output.c:323 NF_HOOK_COND linux/./include/linux/netfilter.h:303 ip_output+0x13b/0x2a0 linux/net/ipv4/ip_output.c:433 dst_output linux/./include/net/dst.h:451 ip_local_out linux/net/ipv4/ip_output.c:129 ip_send_skb+0x3e5/0x560 linux/net/ipv4/ip_output.c:1492 udp_send_skb+0x73f/0x1530 linux/net/ipv4/udp.c:963 udp_sendmsg+0x1a36/0x2b40 linux/net/ipv4/udp.c:1250 inet_sendmsg+0x105/0x140 linux/net/ipv4/af_inet.c:850 sock_sendmsg_nosec linux/net/socket.c:730 __sock_sendmsg linux/net/socket.c:745 __sys_sendto+0x42c/0x4e0 linux/net/socket.c:2191 __do_sys_sendto linux/net/socket.c:2203 __se_sys_sendto linux/net/socket.c:2199 __x64_sys_sendto+0xe0/0x1c0 linux/net/socket.c:2199 do_syscall_x64 linux/arch/x86/entry/common.c:52 do_syscall_ ---truncated--- 2024-06-14 CVE-2024-36886 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: mptcp: ensure snd_nxt is properly initialized on connect Christoph reported a splat hinting at a corrupted snd_una: WARNING: CPU: 1 PID: 38 at net/mptcp/protocol.c:1005 __mptcp_clean_una+0x4b3/0x620 net/mptcp/protocol.c:1005 Modules linked in: CPU: 1 PID: 38 Comm: kworker/1:1 Not tainted 6.9.0-rc1-gbbeac67456c9 #59 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-2.el7 04/01/2014 Workqueue: events mptcp_worker RIP: 0010:__mptcp_clean_una+0x4b3/0x620 net/mptcp/protocol.c:1005 Code: be 06 01 00 00 bf 06 01 00 00 e8 a8 12 e7 fe e9 00 fe ff ff e8 8e 1a e7 fe 0f b7 ab 3e 02 00 00 e9 d3 fd ff ff e8 7d 1a e7 fe <0f> 0b 4c 8b bb e0 05 00 00 e9 74 fc ff ff e8 6a 1a e7 fe 0f 0b e9 RSP: 0018:ffffc9000013fd48 EFLAGS: 00010293 RAX: 0000000000000000 RBX: ffff8881029bd280 RCX: ffffffff82382fe4 RDX: ffff8881003cbd00 RSI: ffffffff823833c3 RDI: 0000000000000001 RBP: 0000000000000000 R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000000 R11: fefefefefefefeff R12: ffff888138ba8000 R13: 0000000000000106 R14: ffff8881029bd908 R15: ffff888126560000 FS: 0000000000000000(0000) GS:ffff88813bd00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f604a5dae38 CR3: 0000000101dac002 CR4: 0000000000170ef0 Call Trace: <TASK> __mptcp_clean_una_wakeup net/mptcp/protocol.c:1055 [inline] mptcp_clean_una_wakeup net/mptcp/protocol.c:1062 [inline] __mptcp_retrans+0x7f/0x7e0 net/mptcp/protocol.c:2615 mptcp_worker+0x434/0x740 net/mptcp/protocol.c:2767 process_one_work+0x1e0/0x560 kernel/workqueue.c:3254 process_scheduled_works kernel/workqueue.c:3335 [inline] worker_thread+0x3c7/0x640 kernel/workqueue.c:3416 kthread+0x121/0x170 kernel/kthread.c:388 ret_from_fork+0x44/0x50 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:243 </TASK> When fallback to TCP happens early on a client socket, snd_nxt is not yet initialized and any incoming ack will copy such value into snd_una. If the mptcp worker (dumbly) tries mptcp-level re-injection after such ack, that would unconditionally trigger a send buffer cleanup using 'bad' snd_una values. We could easily disable re-injection for fallback sockets, but such dumb behavior already helped catching a few subtle issues and a very low to zero impact in practice. Instead address the issue always initializing snd_nxt (and write_seq, for consistency) at connect time. 2024-06-14 CVE-2024-36889 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: gpiolib: cdev: fix uninitialised kfifo If a line is requested with debounce, and that results in debouncing in software, and the line is subsequently reconfigured to enable edge detection then the allocation of the kfifo to contain edge events is overlooked. This results in events being written to and read from an uninitialised kfifo. Read events are returned to userspace. Initialise the kfifo in the case where the software debounce is already active. 2024-06-14 CVE-2024-36898 openEuler-22.03-LTS-SP1 Medium 6.1 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: gpiolib: cdev: Fix use after free in lineinfo_changed_notify The use-after-free issue occurs as follows: when the GPIO chip device file is being closed by invoking gpio_chrdev_release(), watched_lines is freed by bitmap_free(), but the unregistration of lineinfo_changed_nb notifier chain failed due to waiting write rwsem. Additionally, one of the GPIO chip's lines is also in the release process and holds the notifier chain's read rwsem. Consequently, a race condition leads to the use-after-free of watched_lines. Here is the typical stack when issue happened: [free] gpio_chrdev_release() --> bitmap_free(cdev->watched_lines) <-- freed --> blocking_notifier_chain_unregister() --> down_write(&nh->rwsem) <-- waiting rwsem --> __down_write_common() --> rwsem_down_write_slowpath() --> schedule_preempt_disabled() --> schedule() [use] st54spi_gpio_dev_release() --> gpio_free() --> gpiod_free() --> gpiod_free_commit() --> gpiod_line_state_notify() --> blocking_notifier_call_chain() --> down_read(&nh->rwsem); <-- held rwsem --> notifier_call_chain() --> lineinfo_changed_notify() --> test_bit(xxxx, cdev->watched_lines) <-- use after free The side effect of the use-after-free issue is that a GPIO line event is being generated for userspace where it shouldn't. However, since the chrdev is being closed, userspace won't have the chance to read that event anyway. To fix the issue, call the bitmap_free() function after the unregistration of lineinfo_changed_nb notifier chain. 2024-06-14 CVE-2024-36899 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: ipv6: prevent NULL dereference in ip6_output() According to syzbot, there is a chance that ip6_dst_idev() returns NULL in ip6_output(). Most places in IPv6 stack deal with a NULL idev just fine, but not here. syzbot reported: general protection fault, probably for non-canonical address 0xdffffc00000000bc: 0000 [#1] PREEMPT SMP KASAN PTI KASAN: null-ptr-deref in range [0x00000000000005e0-0x00000000000005e7] CPU: 0 PID: 9775 Comm: syz-executor.4 Not tainted 6.9.0-rc5-syzkaller-00157-g6a30653b604a #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024 RIP: 0010:ip6_output+0x231/0x3f0 net/ipv6/ip6_output.c:237 Code: 3c 1e 00 49 89 df 74 08 4c 89 ef e8 19 58 db f7 48 8b 44 24 20 49 89 45 00 49 89 c5 48 8d 9d e0 05 00 00 48 89 d8 48 c1 e8 03 <42> 0f b6 04 38 84 c0 4c 8b 74 24 28 0f 85 61 01 00 00 8b 1b 31 ff RSP: 0018:ffffc9000927f0d8 EFLAGS: 00010202 RAX: 00000000000000bc RBX: 00000000000005e0 RCX: 0000000000040000 RDX: ffffc900131f9000 RSI: 0000000000004f47 RDI: 0000000000004f48 RBP: 0000000000000000 R08: ffffffff8a1f0b9a R09: 1ffffffff1f51fad R10: dffffc0000000000 R11: fffffbfff1f51fae R12: ffff8880293ec8c0 R13: ffff88805d7fc000 R14: 1ffff1100527d91a R15: dffffc0000000000 FS: 00007f135c6856c0(0000) GS:ffff8880b9400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000020000080 CR3: 0000000064096000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> NF_HOOK include/linux/netfilter.h:314 [inline] ip6_xmit+0xefe/0x17f0 net/ipv6/ip6_output.c:358 sctp_v6_xmit+0x9f2/0x13f0 net/sctp/ipv6.c:248 sctp_packet_transmit+0x26ad/0x2ca0 net/sctp/output.c:653 sctp_packet_singleton+0x22c/0x320 net/sctp/outqueue.c:783 sctp_outq_flush_ctrl net/sctp/outqueue.c:914 [inline] sctp_outq_flush+0x6d5/0x3e20 net/sctp/outqueue.c:1212 sctp_side_effects net/sctp/sm_sideeffect.c:1198 [inline] sctp_do_sm+0x59cc/0x60c0 net/sctp/sm_sideeffect.c:1169 sctp_primitive_ASSOCIATE+0x95/0xc0 net/sctp/primitive.c:73 __sctp_connect+0x9cd/0xe30 net/sctp/socket.c:1234 sctp_connect net/sctp/socket.c:4819 [inline] sctp_inet_connect+0x149/0x1f0 net/sctp/socket.c:4834 __sys_connect_file net/socket.c:2048 [inline] __sys_connect+0x2df/0x310 net/socket.c:2065 __do_sys_connect net/socket.c:2075 [inline] __se_sys_connect net/socket.c:2072 [inline] __x64_sys_connect+0x7a/0x90 net/socket.c:2072 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf5/0x240 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f 2024-06-14 CVE-2024-36901 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: ipv6: fib6_rules: avoid possible NULL dereference in fib6_rule_action() syzbot is able to trigger the following crash [1], caused by unsafe ip6_dst_idev() use. Indeed ip6_dst_idev() can return NULL, and must always be checked. [1] Oops: general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN PTI KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007] CPU: 0 PID: 31648 Comm: syz-executor.0 Not tainted 6.9.0-rc4-next-20240417-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024 RIP: 0010:__fib6_rule_action net/ipv6/fib6_rules.c:237 [inline] RIP: 0010:fib6_rule_action+0x241/0x7b0 net/ipv6/fib6_rules.c:267 Code: 02 00 00 49 8d 9f d8 00 00 00 48 89 d8 48 c1 e8 03 42 80 3c 20 00 74 08 48 89 df e8 f9 32 bf f7 48 8b 1b 48 89 d8 48 c1 e8 03 <42> 80 3c 20 00 74 08 48 89 df e8 e0 32 bf f7 4c 8b 03 48 89 ef 4c RSP: 0018:ffffc9000fc1f2f0 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 1a772f98c8186700 RDX: 0000000000000003 RSI: ffffffff8bcac4e0 RDI: ffffffff8c1f9760 RBP: ffff8880673fb980 R08: ffffffff8fac15ef R09: 1ffffffff1f582bd R10: dffffc0000000000 R11: fffffbfff1f582be R12: dffffc0000000000 R13: 0000000000000080 R14: ffff888076509000 R15: ffff88807a029a00 FS: 00007f55e82ca6c0(0000) GS:ffff8880b9400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000001b31d23000 CR3: 0000000022b66000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> fib_rules_lookup+0x62c/0xdb0 net/core/fib_rules.c:317 fib6_rule_lookup+0x1fd/0x790 net/ipv6/fib6_rules.c:108 ip6_route_output_flags_noref net/ipv6/route.c:2637 [inline] ip6_route_output_flags+0x38e/0x610 net/ipv6/route.c:2649 ip6_route_output include/net/ip6_route.h:93 [inline] ip6_dst_lookup_tail+0x189/0x11a0 net/ipv6/ip6_output.c:1120 ip6_dst_lookup_flow+0xb9/0x180 net/ipv6/ip6_output.c:1250 sctp_v6_get_dst+0x792/0x1e20 net/sctp/ipv6.c:326 sctp_transport_route+0x12c/0x2e0 net/sctp/transport.c:455 sctp_assoc_add_peer+0x614/0x15c0 net/sctp/associola.c:662 sctp_connect_new_asoc+0x31d/0x6c0 net/sctp/socket.c:1099 __sctp_connect+0x66d/0xe30 net/sctp/socket.c:1197 sctp_connect net/sctp/socket.c:4819 [inline] sctp_inet_connect+0x149/0x1f0 net/sctp/socket.c:4834 __sys_connect_file net/socket.c:2048 [inline] __sys_connect+0x2df/0x310 net/socket.c:2065 __do_sys_connect net/socket.c:2075 [inline] __se_sys_connect net/socket.c:2072 [inline] __x64_sys_connect+0x7a/0x90 net/socket.c:2072 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf5/0x240 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f 2024-06-14 CVE-2024-36902 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: tcp: defer shutdown(SEND_SHUTDOWN) for TCP_SYN_RECV sockets TCP_SYN_RECV state is really special, it is only used by cross-syn connections, mostly used by fuzzers. In the following crash [1], syzbot managed to trigger a divide by zero in tcp_rcv_space_adjust() A socket makes the following state transitions, without ever calling tcp_init_transfer(), meaning tcp_init_buffer_space() is also not called. TCP_CLOSE connect() TCP_SYN_SENT TCP_SYN_RECV shutdown() -> tcp_shutdown(sk, SEND_SHUTDOWN) TCP_FIN_WAIT1 To fix this issue, change tcp_shutdown() to not perform a TCP_SYN_RECV -> TCP_FIN_WAIT1 transition, which makes no sense anyway. When tcp_rcv_state_process() later changes socket state from TCP_SYN_RECV to TCP_ESTABLISH, then look at sk->sk_shutdown to finally enter TCP_FIN_WAIT1 state, and send a FIN packet from a sane socket state. This means tcp_send_fin() can now be called from BH context, and must use GFP_ATOMIC allocations. [1] divide error: 0000 [#1] PREEMPT SMP KASAN NOPTI CPU: 1 PID: 5084 Comm: syz-executor358 Not tainted 6.9.0-rc6-syzkaller-00022-g98369dccd2f8 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024 RIP: 0010:tcp_rcv_space_adjust+0x2df/0x890 net/ipv4/tcp_input.c:767 Code: e3 04 4c 01 eb 48 8b 44 24 38 0f b6 04 10 84 c0 49 89 d5 0f 85 a5 03 00 00 41 8b 8e c8 09 00 00 89 e8 29 c8 48 0f af c3 31 d2 <48> f7 f1 48 8d 1c 43 49 8d 96 76 08 00 00 48 89 d0 48 c1 e8 03 48 RSP: 0018:ffffc900031ef3f0 EFLAGS: 00010246 RAX: 0c677a10441f8f42 RBX: 000000004fb95e7e RCX: 0000000000000000 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 RBP: 0000000027d4b11f R08: ffffffff89e535a4 R09: 1ffffffff25e6ab7 R10: dffffc0000000000 R11: ffffffff8135e920 R12: ffff88802a9f8d30 R13: dffffc0000000000 R14: ffff88802a9f8d00 R15: 1ffff1100553f2da FS: 00005555775c0380(0000) GS:ffff8880b9500000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f1155bf2304 CR3: 000000002b9f2000 CR4: 0000000000350ef0 Call Trace: <TASK> tcp_recvmsg_locked+0x106d/0x25a0 net/ipv4/tcp.c:2513 tcp_recvmsg+0x25d/0x920 net/ipv4/tcp.c:2578 inet6_recvmsg+0x16a/0x730 net/ipv6/af_inet6.c:680 sock_recvmsg_nosec net/socket.c:1046 [inline] sock_recvmsg+0x109/0x280 net/socket.c:1068 ____sys_recvmsg+0x1db/0x470 net/socket.c:2803 ___sys_recvmsg net/socket.c:2845 [inline] do_recvmmsg+0x474/0xae0 net/socket.c:2939 __sys_recvmmsg net/socket.c:3018 [inline] __do_sys_recvmmsg net/socket.c:3041 [inline] __se_sys_recvmmsg net/socket.c:3034 [inline] __x64_sys_recvmmsg+0x199/0x250 net/socket.c:3034 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf5/0x240 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7faeb6363db9 Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 c1 17 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007ffcc1997168 EFLAGS: 00000246 ORIG_RAX: 000000000000012b RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007faeb6363db9 RDX: 0000000000000001 RSI: 0000000020000bc0 RDI: 0000000000000005 RBP: 0000000000000000 R08: 0000000000000000 R09: 000000000000001c R10: 0000000000000122 R11: 0000000000000246 R12: 0000000000000000 R13: 0000000000000000 R14: 0000000000000001 R15: 0000000000000001 2024-06-14 CVE-2024-36905 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: ARM: 9381/1: kasan: clear stale stack poison We found below OOB crash: [ 33.452494] ================================================================== [ 33.453513] BUG: KASAN: stack-out-of-bounds in refresh_cpu_vm_stats.constprop.0+0xcc/0x2ec [ 33.454660] Write of size 164 at addr c1d03d30 by task swapper/0/0 [ 33.455515] [ 33.455767] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 6.1.25-mainline #1 [ 33.456880] Hardware name: Generic DT based system [ 33.457555] unwind_backtrace from show_stack+0x18/0x1c [ 33.458326] show_stack from dump_stack_lvl+0x40/0x4c [ 33.459072] dump_stack_lvl from print_report+0x158/0x4a4 [ 33.459863] print_report from kasan_report+0x9c/0x148 [ 33.460616] kasan_report from kasan_check_range+0x94/0x1a0 [ 33.461424] kasan_check_range from memset+0x20/0x3c [ 33.462157] memset from refresh_cpu_vm_stats.constprop.0+0xcc/0x2ec [ 33.463064] refresh_cpu_vm_stats.constprop.0 from tick_nohz_idle_stop_tick+0x180/0x53c [ 33.464181] tick_nohz_idle_stop_tick from do_idle+0x264/0x354 [ 33.465029] do_idle from cpu_startup_entry+0x20/0x24 [ 33.465769] cpu_startup_entry from rest_init+0xf0/0xf4 [ 33.466528] rest_init from arch_post_acpi_subsys_init+0x0/0x18 [ 33.467397] [ 33.467644] The buggy address belongs to stack of task swapper/0/0 [ 33.468493] and is located at offset 112 in frame: [ 33.469172] refresh_cpu_vm_stats.constprop.0+0x0/0x2ec [ 33.469917] [ 33.470165] This frame has 2 objects: [ 33.470696] [32, 76) 'global_zone_diff' [ 33.470729] [112, 276) 'global_node_diff' [ 33.471294] [ 33.472095] The buggy address belongs to the physical page: [ 33.472862] page:3cd72da8 refcount:1 mapcount:0 mapping:00000000 index:0x0 pfn:0x41d03 [ 33.473944] flags: 0x1000(reserved|zone=0) [ 33.474565] raw: 00001000 ed741470 ed741470 00000000 00000000 00000000 ffffffff 00000001 [ 33.475656] raw: 00000000 [ 33.476050] page dumped because: kasan: bad access detected [ 33.476816] [ 33.477061] Memory state around the buggy address: [ 33.477732] c1d03c00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 33.478630] c1d03c80: 00 00 00 00 00 00 00 00 f1 f1 f1 f1 00 00 00 00 [ 33.479526] >c1d03d00: 00 04 f2 f2 f2 f2 00 00 00 00 00 00 f1 f1 f1 f1 [ 33.480415] ^ [ 33.481195] c1d03d80: 00 00 00 00 00 00 00 00 00 00 04 f3 f3 f3 f3 f3 [ 33.482088] c1d03e00: f3 f3 f3 f3 00 00 00 00 00 00 00 00 00 00 00 00 [ 33.482978] ================================================================== We find the root cause of this OOB is that arm does not clear stale stack poison in the case of cpuidle. This patch refer to arch/arm64/kernel/sleep.S to resolve this issue. From cited commit [1] that explain the problem Functions which the compiler has instrumented for KASAN place poison on the stack shadow upon entry and remove this poison prior to returning. In the case of cpuidle, CPUs exit the kernel a number of levels deep in C code. Any instrumented functions on this critical path will leave portions of the stack shadow poisoned. If CPUs lose context and return to the kernel via a cold path, we restore a prior context saved in __cpu_suspend_enter are forgotten, and we never remove the poison they placed in the stack shadow area by functions calls between this and the actual exit of the kernel. Thus, (depending on stackframe layout) subsequent calls to instrumented functions may hit this stale poison, resulting in (spurious) KASAN splats to the console. To avoid this, clear any stale poison from the idle thread for a CPU prior to bringing a CPU online. From cited commit [2] Extend to check for CONFIG_KASAN_STACK [1] commit 0d97e6d8024c ("arm64: kasan: clear stale stack poison") [2] commit d56a9ef84bd0 ("kasan, arm64: unpoison stack only with CONFIG_KASAN_STACK") 2024-06-14 CVE-2024-36906 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: blk-iocost: do not WARN if iocg was already offlined In iocg_pay_debt(), warn is triggered if 'active_list' is empty, which is intended to confirm iocg is active when it has debt. However, warn can be triggered during a blkcg or disk removal, if iocg_waitq_timer_fn() is run at that time: WARNING: CPU: 0 PID: 2344971 at block/blk-iocost.c:1402 iocg_pay_debt+0x14c/0x190 Call trace: iocg_pay_debt+0x14c/0x190 iocg_kick_waitq+0x438/0x4c0 iocg_waitq_timer_fn+0xd8/0x130 __run_hrtimer+0x144/0x45c __hrtimer_run_queues+0x16c/0x244 hrtimer_interrupt+0x2cc/0x7b0 The warn in this situation is meaningless. Since this iocg is being removed, the state of the 'active_list' is irrelevant, and 'waitq_timer' is canceled after removing 'active_list' in ioc_pd_free(), which ensures iocg is freed after iocg_waitq_timer_fn() returns. Therefore, add the check if iocg was already offlined to avoid warn when removing a blkcg or disk. 2024-06-14 CVE-2024-36908 openEuler-22.03-LTS-SP1 Low 0.0 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Release hbalock before calling lpfc_worker_wake_up() lpfc_worker_wake_up() calls the lpfc_work_done() routine, which takes the hbalock. Thus, lpfc_worker_wake_up() should not be called while holding the hbalock to avoid potential deadlock. 2024-06-14 CVE-2024-36924 openEuler-22.03-LTS-SP1 Medium 4.7 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: net: core: reject skb_copy(_expand) for fraglist GSO skbs SKB_GSO_FRAGLIST skbs must not be linearized, otherwise they become invalid. Return NULL if such an skb is passed to skb_copy or skb_copy_expand, in order to prevent a crash on a potential later call to skb_gso_segment. 2024-06-14 CVE-2024-36929 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: amd/amdkfd: sync all devices to wait all processes being evicted If there are more than one device doing reset in parallel, the first device will call kfd_suspend_all_processes() to evict all processes on all devices, this call takes time to finish. other device will start reset and recover without waiting. if the process has not been evicted before doing recover, it will be restored, then caused page fault. 2024-06-14 CVE-2024-36949 openEuler-22.03-LTS-SP1 Medium 4.7 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: octeontx2-af: avoid off-by-one read from userspace We try to access count + 1 byte from userspace with memdup_user(buffer, count + 1). However, the userspace only provides buffer of count bytes and only these count bytes are verified to be okay to access. To ensure the copied buffer is NUL terminated, we use memdup_user_nul instead. 2024-06-14 CVE-2024-36957 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706 In the Linux kernel, the following vulnerability has been resolved: fs/9p: only translate RWX permissions for plain 9P2000 Garbage in plain 9P2000's perm bits is allowed through, which causes it to be able to set (among others) the suid bit. This was presumably not the intent since the unix extended bits are handled explicitly and conditionally on .u. 2024-06-14 CVE-2024-36964 openEuler-22.03-LTS-SP1 Medium 5.5 AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N kernel security update 2024-06-14 https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1706