cvrf2cusa/cvrfs/2024/cvrf-openEuler-SA-2024-1707.xml
Jia Chao 0b84f3c661 增加测试用的配置和目录
Signed-off-by: Jia Chao <jiac13@chinaunicom.cn>
2024-07-02 15:51:55 +08:00

5169 lines
218 KiB
XML

<?xml version="1.0" encoding="UTF-8"?>
<cvrfdoc xmlns="http://www.icasi.org/CVRF/schema/cvrf/1.1" xmlns:cvrf="http://www.icasi.org/CVRF/schema/cvrf/1.1">
<DocumentTitle xml:lang="en">An update for kernel is now available for openEuler-22.03-LTS-SP3</DocumentTitle>
<DocumentType>Security Advisory</DocumentType>
<DocumentPublisher Type="Vendor">
<ContactDetails>openeuler-security@openeuler.org</ContactDetails>
<IssuingAuthority>openEuler security committee</IssuingAuthority>
</DocumentPublisher>
<DocumentTracking>
<Identification>
<ID>openEuler-SA-2024-1707</ID>
</Identification>
<Status>Final</Status>
<Version>1.0</Version>
<RevisionHistory>
<Revision>
<Number>1.0</Number>
<Date>2024-06-14</Date>
<Description>Initial</Description>
</Revision>
</RevisionHistory>
<InitialReleaseDate>2024-06-14</InitialReleaseDate>
<CurrentReleaseDate>2024-06-14</CurrentReleaseDate>
<Generator>
<Engine>openEuler SA Tool V1.0</Engine>
<Date>2024-06-14</Date>
</Generator>
</DocumentTracking>
<DocumentNotes>
<Note Title="Synopsis" Type="General" Ordinal="1" xml:lang="en">kernel security update</Note>
<Note Title="Summary" Type="General" Ordinal="2" xml:lang="en">An update for kernel is now available for openEuler-22.03-LTS-SP3.</Note>
<Note Title="Description" Type="General" Ordinal="3" xml:lang="en">The Linux Kernel, the operating system core itself.
Security Fix(es):
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Fix use-after-free of encap entry in neigh update handler
Function mlx5e_rep_neigh_update() wasn&apos;t updated to accommodate rtnl lock
removal from TC filter update path and properly handle concurrent encap
entry insertion/deletion which can lead to following use-after-free:
[23827.464923] ==================================================================
[23827.469446] BUG: KASAN: use-after-free in mlx5e_encap_take+0x72/0x140 [mlx5_core]
[23827.470971] Read of size 4 at addr ffff8881d132228c by task kworker/u20:6/21635
[23827.472251]
[23827.472615] CPU: 9 PID: 21635 Comm: kworker/u20:6 Not tainted 5.13.0-rc3+ #5
[23827.473788] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
[23827.475639] Workqueue: mlx5e mlx5e_rep_neigh_update [mlx5_core]
[23827.476731] Call Trace:
[23827.477260] dump_stack+0xbb/0x107
[23827.477906] print_address_description.constprop.0+0x18/0x140
[23827.478896] ? mlx5e_encap_take+0x72/0x140 [mlx5_core]
[23827.479879] ? mlx5e_encap_take+0x72/0x140 [mlx5_core]
[23827.480905] kasan_report.cold+0x7c/0xd8
[23827.481701] ? mlx5e_encap_take+0x72/0x140 [mlx5_core]
[23827.482744] kasan_check_range+0x145/0x1a0
[23827.493112] mlx5e_encap_take+0x72/0x140 [mlx5_core]
[23827.494054] ? mlx5e_tc_tun_encap_info_equal_generic+0x140/0x140 [mlx5_core]
[23827.495296] mlx5e_rep_neigh_update+0x41e/0x5e0 [mlx5_core]
[23827.496338] ? mlx5e_rep_neigh_entry_release+0xb80/0xb80 [mlx5_core]
[23827.497486] ? read_word_at_a_time+0xe/0x20
[23827.498250] ? strscpy+0xa0/0x2a0
[23827.498889] process_one_work+0x8ac/0x14e0
[23827.499638] ? lockdep_hardirqs_on_prepare+0x400/0x400
[23827.500537] ? pwq_dec_nr_in_flight+0x2c0/0x2c0
[23827.501359] ? rwlock_bug.part.0+0x90/0x90
[23827.502116] worker_thread+0x53b/0x1220
[23827.502831] ? process_one_work+0x14e0/0x14e0
[23827.503627] kthread+0x328/0x3f0
[23827.504254] ? _raw_spin_unlock_irq+0x24/0x40
[23827.505065] ? __kthread_bind_mask+0x90/0x90
[23827.505912] ret_from_fork+0x1f/0x30
[23827.506621]
[23827.506987] Allocated by task 28248:
[23827.507694] kasan_save_stack+0x1b/0x40
[23827.508476] __kasan_kmalloc+0x7c/0x90
[23827.509197] mlx5e_attach_encap+0xde1/0x1d40 [mlx5_core]
[23827.510194] mlx5e_tc_add_fdb_flow+0x397/0xc40 [mlx5_core]
[23827.511218] __mlx5e_add_fdb_flow+0x519/0xb30 [mlx5_core]
[23827.512234] mlx5e_configure_flower+0x191c/0x4870 [mlx5_core]
[23827.513298] tc_setup_cb_add+0x1d5/0x420
[23827.514023] fl_hw_replace_filter+0x382/0x6a0 [cls_flower]
[23827.514975] fl_change+0x2ceb/0x4a51 [cls_flower]
[23827.515821] tc_new_tfilter+0x89a/0x2070
[23827.516548] rtnetlink_rcv_msg+0x644/0x8c0
[23827.517300] netlink_rcv_skb+0x11d/0x340
[23827.518021] netlink_unicast+0x42b/0x700
[23827.518742] netlink_sendmsg+0x743/0xc20
[23827.519467] sock_sendmsg+0xb2/0xe0
[23827.520131] ____sys_sendmsg+0x590/0x770
[23827.520851] ___sys_sendmsg+0xd8/0x160
[23827.521552] __sys_sendmsg+0xb7/0x140
[23827.522238] do_syscall_64+0x3a/0x70
[23827.522907] entry_SYSCALL_64_after_hwframe+0x44/0xae
[23827.523797]
[23827.524163] Freed by task 25948:
[23827.524780] kasan_save_stack+0x1b/0x40
[23827.525488] kasan_set_track+0x1c/0x30
[23827.526187] kasan_set_free_info+0x20/0x30
[23827.526968] __kasan_slab_free+0xed/0x130
[23827.527709] slab_free_freelist_hook+0xcf/0x1d0
[23827.528528] kmem_cache_free_bulk+0x33a/0x6e0
[23827.529317] kfree_rcu_work+0x55f/0xb70
[23827.530024] process_one_work+0x8ac/0x14e0
[23827.530770] worker_thread+0x53b/0x1220
[23827.531480] kthread+0x328/0x3f0
[23827.532114] ret_from_fork+0x1f/0x30
[23827.532785]
[23827.533147] Last potentially related work creation:
[23827.534007] kasan_save_stack+0x1b/0x40
[23827.534710] kasan_record_aux_stack+0xab/0xc0
[23827.535492] kvfree_call_rcu+0x31/0x7b0
[23827.536206] mlx5e_tc_del
---truncated---(CVE-2021-47247)
In the Linux kernel, the following vulnerability has been resolved:
octeontx2-af: Fix possible null pointer dereference.
This patch fixes possible null pointer dereference in files
&quot;rvu_debugfs.c&quot; and &quot;rvu_nix.c&quot;(CVE-2021-47484)
In the Linux kernel, the following vulnerability has been resolved:
net: stmmac: Disable Tx queues when reconfiguring the interface
The Tx queues were not disabled in situations where the driver needed to
stop the interface to apply a new configuration. This could result in a
kernel panic when doing any of the 3 following actions:
* reconfiguring the number of queues (ethtool -L)
* reconfiguring the size of the ring buffers (ethtool -G)
* installing/removing an XDP program (ip l set dev ethX xdp)
Prevent the panic by making sure netif_tx_disable is called when stopping
an interface.
Without this patch, the following kernel panic can be observed when doing
any of the actions above:
Unable to handle kernel paging request at virtual address ffff80001238d040
[....]
Call trace:
dwmac4_set_addr+0x8/0x10
dev_hard_start_xmit+0xe4/0x1ac
sch_direct_xmit+0xe8/0x39c
__dev_queue_xmit+0x3ec/0xaf0
dev_queue_xmit+0x14/0x20
[...]
[ end trace 0000000000000002 ]---(CVE-2021-47558)
In the Linux kernel, the following vulnerability has been resolved:
ice: Fix crash by keep old cfg when update TCs more than queues
There are problems if allocated queues less than Traffic Classes.
Commit a632b2a4c920 (&quot;ice: ethtool: Prohibit improper channel config
for DCB&quot;) already disallow setting less queues than TCs.
Another case is if we first set less queues, and later update more TCs
config due to LLDP, ice_vsi_cfg_tc() will failed but left dirty
num_txq/rxq and tc_cfg in vsi, that will cause invalid pointer access.
[ 95.968089] ice 0000:3b:00.1: More TCs defined than queues/rings allocated.
[ 95.968092] ice 0000:3b:00.1: Trying to use more Rx queues (8), than were allocated (1)!
[ 95.968093] ice 0000:3b:00.1: Failed to config TC for VSI index: 0
[ 95.969621] general protection fault: 0000 [#1] SMP NOPTI
[ 95.969705] CPU: 1 PID: 58405 Comm: lldpad Kdump: loaded Tainted: G U W O --------- -t - 4.18.0 #1
[ 95.969867] Hardware name: O.E.M/BC11SPSCB10, BIOS 8.23 12/30/2021
[ 95.969992] RIP: 0010:devm_kmalloc+0xa/0x60
[ 95.970052] Code: 5c ff ff ff 31 c0 5b 5d 41 5c c3 b8 f4 ff ff ff eb f4 0f 1f 40 00 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 48 89 f8 89 d1 &lt;8b&gt; 97 60 02 00 00 48 8d 7e 18 48 39 f7 72 3f 55 89 ce 53 48 8b 4c
[ 95.970344] RSP: 0018:ffffc9003f553888 EFLAGS: 00010206
[ 95.970425] RAX: dead000000000200 RBX: ffffea003c425b00 RCX: 00000000006080c0
[ 95.970536] RDX: 00000000006080c0 RSI: 0000000000000200 RDI: dead000000000200
[ 95.970648] RBP: dead000000000200 R08: 00000000000463c0 R09: ffff888ffa900000
[ 95.970760] R10: 0000000000000000 R11: 0000000000000002 R12: ffff888ff6b40100
[ 95.970870] R13: ffff888ff6a55018 R14: 0000000000000000 R15: ffff888ff6a55460
[ 95.970981] FS: 00007f51b7d24700(0000) GS:ffff88903ee80000(0000) knlGS:0000000000000000
[ 95.971108] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 95.971197] CR2: 00007fac5410d710 CR3: 0000000f2c1de002 CR4: 00000000007606e0
[ 95.971309] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 95.971419] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 95.971530] PKRU: 55555554
[ 95.971573] Call Trace:
[ 95.971622] ice_setup_rx_ring+0x39/0x110 [ice]
[ 95.971695] ice_vsi_setup_rx_rings+0x54/0x90 [ice]
[ 95.971774] ice_vsi_open+0x25/0x120 [ice]
[ 95.971843] ice_open_internal+0xb8/0x1f0 [ice]
[ 95.971919] ice_ena_vsi+0x4f/0xd0 [ice]
[ 95.971987] ice_dcb_ena_dis_vsi.constprop.5+0x29/0x90 [ice]
[ 95.972082] ice_pf_dcb_cfg+0x29a/0x380 [ice]
[ 95.972154] ice_dcbnl_setets+0x174/0x1b0 [ice]
[ 95.972220] dcbnl_ieee_set+0x89/0x230
[ 95.972279] ? dcbnl_ieee_del+0x150/0x150
[ 95.972341] dcb_doit+0x124/0x1b0
[ 95.972392] rtnetlink_rcv_msg+0x243/0x2f0
[ 95.972457] ? dcb_doit+0x14d/0x1b0
[ 95.972510] ? __kmalloc_node_track_caller+0x1d3/0x280
[ 95.972591] ? rtnl_calcit.isra.31+0x100/0x100
[ 95.972661] netlink_rcv_skb+0xcf/0xf0
[ 95.972720] netlink_unicast+0x16d/0x220
[ 95.972781] netlink_sendmsg+0x2ba/0x3a0
[ 95.975891] sock_sendmsg+0x4c/0x50
[ 95.979032] ___sys_sendmsg+0x2e4/0x300
[ 95.982147] ? kmem_cache_alloc+0x13e/0x190
[ 95.985242] ? __wake_up_common_lock+0x79/0x90
[ 95.988338] ? __check_object_size+0xac/0x1b0
[ 95.991440] ? _copy_to_user+0x22/0x30
[ 95.994539] ? move_addr_to_user+0xbb/0xd0
[ 95.997619] ? __sys_sendmsg+0x53/0x80
[ 96.000664] __sys_sendmsg+0x53/0x80
[ 96.003747] do_syscall_64+0x5b/0x1d0
[ 96.006862] entry_SYSCALL_64_after_hwframe+0x65/0xca
Only update num_txq/rxq when passed check, and restore tc_cfg if setup
queue map failed.(CVE-2022-48652)
In the Linux kernel, the following vulnerability has been resolved:
pipe: wakeup wr_wait after setting max_usage
Commit c73be61cede5 (&quot;pipe: Add general notification queue support&quot;) a
regression was introduced that would lock up resized pipes under certain
conditions. See the reproducer in [1].
The commit resizing the pipe ring size was moved to a different
function, doing that moved the wakeup for pipe-&gt;wr_wait before actually
raising pipe-&gt;max_usage. If a pipe was full before the resize occured it
would result in the wakeup never actually triggering pipe_write.
Set @max_usage and @nr_accounted before waking writers if this isn&apos;t a
watch queue.
[Christian Brauner &lt;brauner@kernel.org&gt;: rewrite to account for watch queues](CVE-2023-52672)
In the Linux kernel, the following vulnerability has been resolved:
ALSA: scarlett2: Add missing error checks to *_ctl_get()
The *_ctl_get() functions which call scarlett2_update_*() were not
checking the return value. Fix to check the return value and pass to
the caller.(CVE-2023-52680)
In the Linux kernel, the following vulnerability has been resolved:
powerpc/powernv: Add a null pointer check in opal_event_init()
kasprintf() returns a pointer to dynamically allocated memory
which can be NULL upon failure.(CVE-2023-52686)
In the Linux kernel, the following vulnerability has been resolved:
ACPI: video: check for error while searching for backlight device parent
If acpi_get_parent() called in acpi_video_dev_register_backlight()
fails, for example, because acpi_ut_acquire_mutex() fails inside
acpi_get_parent), this can lead to incorrect (uninitialized)
acpi_parent handle being passed to acpi_get_pci_dev() for detecting
the parent pci device.
Check acpi_get_parent() result and set parent device only in case of success.
Found by Linux Verification Center (linuxtesting.org) with SVACE.(CVE-2023-52693)
In the Linux kernel, the following vulnerability has been resolved:
ceph: blocklist the kclient when receiving corrupted snap trace
When received corrupted snap trace we don&apos;t know what exactly has
happened in MDS side. And we shouldn&apos;t continue IOs and metadatas
access to MDS, which may corrupt or get incorrect contents.
This patch will just block all the further IO/MDS requests
immediately and then evict the kclient itself.
The reason why we still need to evict the kclient just after
blocking all the further IOs is that the MDS could revoke the caps
faster.(CVE-2023-52732)
In the Linux kernel, the following vulnerability has been resolved:
virtio-blk: fix implicit overflow on virtio_max_dma_size
The following codes have an implicit conversion from size_t to u32:
(u32)max_size = (size_t)virtio_max_dma_size(vdev);
This may lead overflow, Ex (size_t)4G -&gt; (u32)0. Once
virtio_max_dma_size() has a larger size than U32_MAX, use U32_MAX
instead.(CVE-2023-52762)
In the Linux kernel, the following vulnerability has been resolved:
net/smc: avoid data corruption caused by decline
We found a data corruption issue during testing of SMC-R on Redis
applications.
The benchmark has a low probability of reporting a strange error as
shown below.
&quot;Error: Protocol error, got &quot;\xe2&quot; as reply type byte&quot;
Finally, we found that the retrieved error data was as follows:
0xE2 0xD4 0xC3 0xD9 0x04 0x00 0x2C 0x20 0xA6 0x56 0x00 0x16 0x3E 0x0C
0xCB 0x04 0x02 0x01 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0xE2
It is quite obvious that this is a SMC DECLINE message, which means that
the applications received SMC protocol message.
We found that this was caused by the following situations:
client server
¦ clc proposal
-------------&gt;
¦ clc accept
&lt;-------------
¦ clc confirm
-------------&gt;
wait llc confirm
send llc confirm
¦failed llc confirm
¦ x------
(after 2s)timeout
wait llc confirm rsp
wait decline
(after 1s) timeout
(after 2s) timeout
¦ decline
--------------&gt;
¦ decline
&lt;--------------
As a result, a decline message was sent in the implementation, and this
message was read from TCP by the already-fallback connection.
This patch double the client timeout as 2x of the server value,
With this simple change, the Decline messages should never cross or
collide (during Confirm link timeout).
This issue requires an immediate solution, since the protocol updates
involve a more long-term solution.(CVE-2023-52775)
In the Linux kernel, the following vulnerability has been resolved:
SUNRPC: Fix RPC client cleaned up the freed pipefs dentries
RPC client pipefs dentries cleanup is in separated rpc_remove_pipedir()
workqueue,which takes care about pipefs superblock locking.
In some special scenarios, when kernel frees the pipefs sb of the
current client and immediately alloctes a new pipefs sb,
rpc_remove_pipedir function would misjudge the existence of pipefs
sb which is not the one it used to hold. As a result,
the rpc_remove_pipedir would clean the released freed pipefs dentries.
To fix this issue, rpc_remove_pipedir should check whether the
current pipefs sb is consistent with the original pipefs sb.
This error can be catched by KASAN:
=========================================================
[ 250.497700] BUG: KASAN: slab-use-after-free in dget_parent+0x195/0x200
[ 250.498315] Read of size 4 at addr ffff88800a2ab804 by task kworker/0:18/106503
[ 250.500549] Workqueue: events rpc_free_client_work
[ 250.501001] Call Trace:
[ 250.502880] kasan_report+0xb6/0xf0
[ 250.503209] ? dget_parent+0x195/0x200
[ 250.503561] dget_parent+0x195/0x200
[ 250.503897] ? __pfx_rpc_clntdir_depopulate+0x10/0x10
[ 250.504384] rpc_rmdir_depopulate+0x1b/0x90
[ 250.504781] rpc_remove_client_dir+0xf5/0x150
[ 250.505195] rpc_free_client_work+0xe4/0x230
[ 250.505598] process_one_work+0x8ee/0x13b0
...
[ 22.039056] Allocated by task 244:
[ 22.039390] kasan_save_stack+0x22/0x50
[ 22.039758] kasan_set_track+0x25/0x30
[ 22.040109] __kasan_slab_alloc+0x59/0x70
[ 22.040487] kmem_cache_alloc_lru+0xf0/0x240
[ 22.040889] __d_alloc+0x31/0x8e0
[ 22.041207] d_alloc+0x44/0x1f0
[ 22.041514] __rpc_lookup_create_exclusive+0x11c/0x140
[ 22.041987] rpc_mkdir_populate.constprop.0+0x5f/0x110
[ 22.042459] rpc_create_client_dir+0x34/0x150
[ 22.042874] rpc_setup_pipedir_sb+0x102/0x1c0
[ 22.043284] rpc_client_register+0x136/0x4e0
[ 22.043689] rpc_new_client+0x911/0x1020
[ 22.044057] rpc_create_xprt+0xcb/0x370
[ 22.044417] rpc_create+0x36b/0x6c0
...
[ 22.049524] Freed by task 0:
[ 22.049803] kasan_save_stack+0x22/0x50
[ 22.050165] kasan_set_track+0x25/0x30
[ 22.050520] kasan_save_free_info+0x2b/0x50
[ 22.050921] __kasan_slab_free+0x10e/0x1a0
[ 22.051306] kmem_cache_free+0xa5/0x390
[ 22.051667] rcu_core+0x62c/0x1930
[ 22.051995] __do_softirq+0x165/0x52a
[ 22.052347]
[ 22.052503] Last potentially related work creation:
[ 22.052952] kasan_save_stack+0x22/0x50
[ 22.053313] __kasan_record_aux_stack+0x8e/0xa0
[ 22.053739] __call_rcu_common.constprop.0+0x6b/0x8b0
[ 22.054209] dentry_free+0xb2/0x140
[ 22.054540] __dentry_kill+0x3be/0x540
[ 22.054900] shrink_dentry_list+0x199/0x510
[ 22.055293] shrink_dcache_parent+0x190/0x240
[ 22.055703] do_one_tree+0x11/0x40
[ 22.056028] shrink_dcache_for_umount+0x61/0x140
[ 22.056461] generic_shutdown_super+0x70/0x590
[ 22.056879] kill_anon_super+0x3a/0x60
[ 22.057234] rpc_kill_sb+0x121/0x200(CVE-2023-52803)
In the Linux kernel, the following vulnerability has been resolved:
fs/jfs: Add check for negative db_l2nbperpage
l2nbperpage is log2(number of blks per page), and the minimum legal
value should be 0, not negative.
In the case of l2nbperpage being negative, an error will occur
when subsequently used as shift exponent.
Syzbot reported this bug:
UBSAN: shift-out-of-bounds in fs/jfs/jfs_dmap.c:799:12
shift exponent -16777216 is negative(CVE-2023-52810)
In the Linux kernel, the following vulnerability has been resolved:
tty: n_gsm: require CAP_NET_ADMIN to attach N_GSM0710 ldisc
Any unprivileged user can attach N_GSM0710 ldisc, but it requires
CAP_NET_ADMIN to create a GSM network anyway.
Require initial namespace CAP_NET_ADMIN to do that.(CVE-2023-52880)
In the Linux kernel, the following vulnerability has been resolved:
tcp: do not accept ACK of bytes we never sent
This patch is based on a detailed report and ideas from Yepeng Pan
and Christian Rossow.
ACK seq validation is currently following RFC 5961 5.2 guidelines:
The ACK value is considered acceptable only if
it is in the range of ((SND.UNA - MAX.SND.WND) &lt;= SEG.ACK &lt;=
SND.NXT). All incoming segments whose ACK value doesn&apos;t satisfy the
above condition MUST be discarded and an ACK sent back. It needs to
be noted that RFC 793 on page 72 (fifth check) says: &quot;If the ACK is a
duplicate (SEG.ACK &lt; SND.UNA), it can be ignored. If the ACK
acknowledges something not yet sent (SEG.ACK &gt; SND.NXT) then send an
ACK, drop the segment, and return&quot;. The &quot;ignored&quot; above implies that
the processing of the incoming data segment continues, which means
the ACK value is treated as acceptable. This mitigation makes the
ACK check more stringent since any ACK &lt; SND.UNA wouldn&apos;t be
accepted, instead only ACKs that are in the range ((SND.UNA -
MAX.SND.WND) &lt;= SEG.ACK &lt;= SND.NXT) get through.
This can be refined for new (and possibly spoofed) flows,
by not accepting ACK for bytes that were never sent.
This greatly improves TCP security at a little cost.
I added a Fixes: tag to make sure this patch will reach stable trees,
even if the &apos;blamed&apos; patch was adhering to the RFC.
tp-&gt;bytes_acked was added in linux-4.2
Following packetdrill test (courtesy of Yepeng Pan) shows
the issue at hand:
0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3
+0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0
+0 bind(3, ..., ...) = 0
+0 listen(3, 1024) = 0
// ---------------- Handshake ------------------- //
// when window scale is set to 14 the window size can be extended to
// 65535 * (2^14) = 1073725440. Linux would accept an ACK packet
// with ack number in (Server_ISN+1-1073725440. Server_ISN+1)
// ,though this ack number acknowledges some data never
// sent by the server.
+0 &lt; S 0:0(0) win 65535 &lt;mss 1400,nop,wscale 14&gt;
+0 &gt; S. 0:0(0) ack 1 &lt;...&gt;
+0 &lt; . 1:1(0) ack 1 win 65535
+0 accept(3, ..., ...) = 4
// For the established connection, we send an ACK packet,
// the ack packet uses ack number 1 - 1073725300 + 2^32,
// where 2^32 is used to wrap around.
// Note: we used 1073725300 instead of 1073725440 to avoid possible
// edge cases.
// 1 - 1073725300 + 2^32 = 3221241997
// Oops, old kernels happily accept this packet.
+0 &lt; . 1:1001(1000) ack 3221241997 win 65535
// After the kernel fix the following will be replaced by a challenge ACK,
// and prior malicious frame would be dropped.
+0 &gt; . 1:1(0) ack 1001(CVE-2023-52881)
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: set dormant flag on hook register failure
We need to set the dormant flag again if we fail to register
the hooks.
During memory pressure hook registration can fail and we end up
with a table marked as active but no registered hooks.
On table/base chain deletion, nf_tables will attempt to unregister
the hook again which yields a warn splat from the nftables core.(CVE-2024-26835)
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_core: Fix possible buffer overflow
struct hci_dev_info has a fixed size name[8] field so in the event that
hdev-&gt;name is bigger than that strcpy would attempt to write past its
size, so this fixes this problem by switching to use strscpy.(CVE-2024-26889)
In the Linux kernel, the following vulnerability has been resolved:
xen-netfront: Add missing skb_mark_for_recycle
Notice that skb_mark_for_recycle() is introduced later than fixes tag in
commit 6a5bcd84e886 (&quot;page_pool: Allow drivers to hint on SKB recycling&quot;).
It is believed that fixes tag were missing a call to page_pool_release_page()
between v5.9 to v5.14, after which is should have used skb_mark_for_recycle().
Since v6.6 the call page_pool_release_page() were removed (in
commit 535b9c61bdef (&quot;net: page_pool: hide page_pool_release_page()&quot;)
and remaining callers converted (in commit 6bfef2ec0172 (&quot;Merge branch
&apos;net-page_pool-remove-page_pool_release_page&apos;&quot;)).
This leak became visible in v6.8 via commit dba1b8a7ab68 (&quot;mm/page_pool: catch
page_pool memory leaks&quot;).(CVE-2024-27393)
In the Linux kernel, the following vulnerability has been resolved:
phonet/pep: fix racy skb_queue_empty() use
The receive queues are protected by their respective spin-lock, not
the socket lock. This could lead to skb_peek() unexpectedly
returning NULL or a pointer to an already dequeued socket buffer.(CVE-2024-27402)
In the Linux kernel, the following vulnerability has been resolved:
dmaengine: dw-edma: eDMA: Add sync read before starting the DMA transfer in remote setup
The Linked list element and pointer are not stored in the same memory as
the eDMA controller register. If the doorbell register is toggled before
the full write of the linked list a race condition error will occur.
In remote setup we can only use a readl to the memory to assure the full
write has occurred.(CVE-2024-27408)
In the Linux kernel, the following vulnerability has been resolved:
usb: typec: altmodes/displayport: create sysfs nodes as driver&apos;s default device attribute group
The DisplayPort driver&apos;s sysfs nodes may be present to the userspace before
typec_altmode_set_drvdata() completes in dp_altmode_probe. This means that
a sysfs read can trigger a NULL pointer error by deferencing dp-&gt;hpd in
hpd_show or dp-&gt;lock in pin_assignment_show, as dev_get_drvdata() returns
NULL in those cases.
Remove manual sysfs node creation in favor of adding attribute group as
default for devices bound to the driver. The ATTRIBUTE_GROUPS() macro is
not used here otherwise the path to the sysfs nodes is no longer compliant
with the ABI.(CVE-2024-35790)
In the Linux kernel, the following vulnerability has been resolved:
PCI/PM: Drain runtime-idle callbacks before driver removal
A race condition between the .runtime_idle() callback and the .remove()
callback in the rtsx_pcr PCI driver leads to a kernel crash due to an
unhandled page fault [1].
The problem is that rtsx_pci_runtime_idle() is not expected to be running
after pm_runtime_get_sync() has been called, but the latter doesn&apos;t really
guarantee that. It only guarantees that the suspend and resume callbacks
will not be running when it returns.
However, if a .runtime_idle() callback is already running when
pm_runtime_get_sync() is called, the latter will notice that the runtime PM
status of the device is RPM_ACTIVE and it will return right away without
waiting for the former to complete. In fact, it cannot wait for
.runtime_idle() to complete because it may be called from that callback (it
arguably does not make much sense to do that, but it is not strictly
prohibited).
Thus in general, whoever is providing a .runtime_idle() callback needs
to protect it from running in parallel with whatever code runs after
pm_runtime_get_sync(). [Note that .runtime_idle() will not start after
pm_runtime_get_sync() has returned, but it may continue running then if it
has started earlier.]
One way to address that race condition is to call pm_runtime_barrier()
after pm_runtime_get_sync() (not before it, because a nonzero value of the
runtime PM usage counter is necessary to prevent runtime PM callbacks from
being invoked) to wait for the .runtime_idle() callback to complete should
it be running at that point. A suitable place for doing that is in
pci_device_remove() which calls pm_runtime_get_sync() before removing the
driver, so it may as well call pm_runtime_barrier() subsequently, which
will prevent the race in question from occurring, not just in the rtsx_pcr
driver, but in any PCI drivers providing .runtime_idle() callbacks.(CVE-2024-35809)
In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: Fix use-after-free bug in brcmf_cfg80211_detach
This is the candidate patch of CVE-2023-47233 :
https://nvd.nist.gov/vuln/detail/CVE-2023-47233
In brcm80211 driver,it starts with the following invoking chain
to start init a timeout worker:
-&gt;brcmf_usb_probe
-&gt;brcmf_usb_probe_cb
-&gt;brcmf_attach
-&gt;brcmf_bus_started
-&gt;brcmf_cfg80211_attach
-&gt;wl_init_priv
-&gt;brcmf_init_escan
-&gt;INIT_WORK(&amp;cfg-&gt;escan_timeout_work,
brcmf_cfg80211_escan_timeout_worker);
If we disconnect the USB by hotplug, it will call
brcmf_usb_disconnect to make cleanup. The invoking chain is :
brcmf_usb_disconnect
-&gt;brcmf_usb_disconnect_cb
-&gt;brcmf_detach
-&gt;brcmf_cfg80211_detach
-&gt;kfree(cfg);
While the timeout woker may still be running. This will cause
a use-after-free bug on cfg in brcmf_cfg80211_escan_timeout_worker.
Fix it by deleting the timer and canceling the worker in
brcmf_cfg80211_detach.
[arend.vanspriel@broadcom.com: keep timer delete as is and cancel work just before free](CVE-2024-35811)
In the Linux kernel, the following vulnerability has been resolved:
mlxsw: spectrum_acl_tcam: Fix memory leak during rehash
The rehash delayed work migrates filters from one region to another.
This is done by iterating over all chunks (all the filters with the same
priority) in the region and in each chunk iterating over all the
filters.
If the migration fails, the code tries to migrate the filters back to
the old region. However, the rollback itself can also fail in which case
another migration will be erroneously performed. Besides the fact that
this ping pong is not a very good idea, it also creates a problem.
Each virtual chunk references two chunks: The currently used one
(&apos;vchunk-&gt;chunk&apos;) and a backup (&apos;vchunk-&gt;chunk2&apos;). During migration the
first holds the chunk we want to migrate filters to and the second holds
the chunk we are migrating filters from.
The code currently assumes - but does not verify - that the backup chunk
does not exist (NULL) if the currently used chunk does not reference the
target region. This assumption breaks when we are trying to rollback a
rollback, resulting in the backup chunk being overwritten and leaked
[1].
Fix by not rolling back a failed rollback and add a warning to avoid
future cases.
[1]
WARNING: CPU: 5 PID: 1063 at lib/parman.c:291 parman_destroy+0x17/0x20
Modules linked in:
CPU: 5 PID: 1063 Comm: kworker/5:11 Tainted: G W 6.9.0-rc2-custom-00784-gc6a05c468a0b #14
Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019
Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work
RIP: 0010:parman_destroy+0x17/0x20
[...]
Call Trace:
&lt;TASK&gt;
mlxsw_sp_acl_atcam_region_fini+0x19/0x60
mlxsw_sp_acl_tcam_region_destroy+0x49/0xf0
mlxsw_sp_acl_tcam_vregion_rehash_work+0x1f1/0x470
process_one_work+0x151/0x370
worker_thread+0x2cb/0x3e0
kthread+0xd0/0x100
ret_from_fork+0x34/0x50
ret_from_fork_asm+0x1a/0x30
&lt;/TASK&gt;(CVE-2024-35853)
In the Linux kernel, the following vulnerability has been resolved:
mlxsw: spectrum_acl_tcam: Fix possible use-after-free during rehash
The rehash delayed work migrates filters from one region to another
according to the number of available credits.
The migrated from region is destroyed at the end of the work if the
number of credits is non-negative as the assumption is that this is
indicative of migration being complete. This assumption is incorrect as
a non-negative number of credits can also be the result of a failed
migration.
The destruction of a region that still has filters referencing it can
result in a use-after-free [1].
Fix by not destroying the region if migration failed.
[1]
BUG: KASAN: slab-use-after-free in mlxsw_sp_acl_ctcam_region_entry_remove+0x21d/0x230
Read of size 8 at addr ffff8881735319e8 by task kworker/0:31/3858
CPU: 0 PID: 3858 Comm: kworker/0:31 Tainted: G W 6.9.0-rc2-custom-00782-gf2275c2157d8 #5
Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019
Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work
Call Trace:
&lt;TASK&gt;
dump_stack_lvl+0xc6/0x120
print_report+0xce/0x670
kasan_report+0xd7/0x110
mlxsw_sp_acl_ctcam_region_entry_remove+0x21d/0x230
mlxsw_sp_acl_ctcam_entry_del+0x2e/0x70
mlxsw_sp_acl_atcam_entry_del+0x81/0x210
mlxsw_sp_acl_tcam_vchunk_migrate_all+0x3cd/0xb50
mlxsw_sp_acl_tcam_vregion_rehash_work+0x157/0x1300
process_one_work+0x8eb/0x19b0
worker_thread+0x6c9/0xf70
kthread+0x2c9/0x3b0
ret_from_fork+0x4d/0x80
ret_from_fork_asm+0x1a/0x30
&lt;/TASK&gt;
Allocated by task 174:
kasan_save_stack+0x33/0x60
kasan_save_track+0x14/0x30
__kasan_kmalloc+0x8f/0xa0
__kmalloc+0x19c/0x360
mlxsw_sp_acl_tcam_region_create+0xdf/0x9c0
mlxsw_sp_acl_tcam_vregion_rehash_work+0x954/0x1300
process_one_work+0x8eb/0x19b0
worker_thread+0x6c9/0xf70
kthread+0x2c9/0x3b0
ret_from_fork+0x4d/0x80
ret_from_fork_asm+0x1a/0x30
Freed by task 7:
kasan_save_stack+0x33/0x60
kasan_save_track+0x14/0x30
kasan_save_free_info+0x3b/0x60
poison_slab_object+0x102/0x170
__kasan_slab_free+0x14/0x30
kfree+0xc1/0x290
mlxsw_sp_acl_tcam_region_destroy+0x272/0x310
mlxsw_sp_acl_tcam_vregion_rehash_work+0x731/0x1300
process_one_work+0x8eb/0x19b0
worker_thread+0x6c9/0xf70
kthread+0x2c9/0x3b0
ret_from_fork+0x4d/0x80
ret_from_fork_asm+0x1a/0x30(CVE-2024-35854)
In the Linux kernel, the following vulnerability has been resolved:
riscv: process: Fix kernel gp leakage
childregs represents the registers which are active for the new thread
in user context. For a kernel thread, childregs-&gt;gp is never used since
the kernel gp is not touched by switch_to. For a user mode helper, the
gp value can be observed in user space after execve or possibly by other
means.
[From the email thread]
The /* Kernel thread */ comment is somewhat inaccurate in that it is also used
for user_mode_helper threads, which exec a user process, e.g. /sbin/init or
when /proc/sys/kernel/core_pattern is a pipe. Such threads do not have
PF_KTHREAD set and are valid targets for ptrace etc. even before they exec.
childregs is the *user* context during syscall execution and it is observable
from userspace in at least five ways:
1. kernel_execve does not currently clear integer registers, so the starting
register state for PID 1 and other user processes started by the kernel has
sp = user stack, gp = kernel __global_pointer$, all other integer registers
zeroed by the memset in the patch comment.
This is a bug in its own right, but I&apos;m unwilling to bet that it is the only
way to exploit the issue addressed by this patch.
2. ptrace(PTRACE_GETREGSET): you can PTRACE_ATTACH to a user_mode_helper thread
before it execs, but ptrace requires SIGSTOP to be delivered which can only
happen at user/kernel boundaries.
3. /proc/*/task/*/syscall: this is perfectly happy to read pt_regs for
user_mode_helpers before the exec completes, but gp is not one of the
registers it returns.
4. PERF_SAMPLE_REGS_USER: LOCKDOWN_PERF normally prevents access to kernel
addresses via PERF_SAMPLE_REGS_INTR, but due to this bug kernel addresses
are also exposed via PERF_SAMPLE_REGS_USER which is permitted under
LOCKDOWN_PERF. I have not attempted to write exploit code.
5. Much of the tracing infrastructure allows access to user registers. I have
not attempted to determine which forms of tracing allow access to user
registers without already allowing access to kernel registers.(CVE-2024-35871)
In the Linux kernel, the following vulnerability has been resolved:
erspan: make sure erspan_base_hdr is present in skb-&gt;head
syzbot reported a problem in ip6erspan_rcv() [1]
Issue is that ip6erspan_rcv() (and erspan_rcv()) no longer make
sure erspan_base_hdr is present in skb linear part (skb-&gt;head)
before getting @ver field from it.
Add the missing pskb_may_pull() calls.
v2: Reload iph pointer in erspan_rcv() after pskb_may_pull()
because skb-&gt;head might have changed.
[1]
BUG: KMSAN: uninit-value in pskb_may_pull_reason include/linux/skbuff.h:2742 [inline]
BUG: KMSAN: uninit-value in pskb_may_pull include/linux/skbuff.h:2756 [inline]
BUG: KMSAN: uninit-value in ip6erspan_rcv net/ipv6/ip6_gre.c:541 [inline]
BUG: KMSAN: uninit-value in gre_rcv+0x11f8/0x1930 net/ipv6/ip6_gre.c:610
pskb_may_pull_reason include/linux/skbuff.h:2742 [inline]
pskb_may_pull include/linux/skbuff.h:2756 [inline]
ip6erspan_rcv net/ipv6/ip6_gre.c:541 [inline]
gre_rcv+0x11f8/0x1930 net/ipv6/ip6_gre.c:610
ip6_protocol_deliver_rcu+0x1d4c/0x2ca0 net/ipv6/ip6_input.c:438
ip6_input_finish net/ipv6/ip6_input.c:483 [inline]
NF_HOOK include/linux/netfilter.h:314 [inline]
ip6_input+0x15d/0x430 net/ipv6/ip6_input.c:492
ip6_mc_input+0xa7e/0xc80 net/ipv6/ip6_input.c:586
dst_input include/net/dst.h:460 [inline]
ip6_rcv_finish+0x955/0x970 net/ipv6/ip6_input.c:79
NF_HOOK include/linux/netfilter.h:314 [inline]
ipv6_rcv+0xde/0x390 net/ipv6/ip6_input.c:310
__netif_receive_skb_one_core net/core/dev.c:5538 [inline]
__netif_receive_skb+0x1da/0xa00 net/core/dev.c:5652
netif_receive_skb_internal net/core/dev.c:5738 [inline]
netif_receive_skb+0x58/0x660 net/core/dev.c:5798
tun_rx_batched+0x3ee/0x980 drivers/net/tun.c:1549
tun_get_user+0x5566/0x69e0 drivers/net/tun.c:2002
tun_chr_write_iter+0x3af/0x5d0 drivers/net/tun.c:2048
call_write_iter include/linux/fs.h:2108 [inline]
new_sync_write fs/read_write.c:497 [inline]
vfs_write+0xb63/0x1520 fs/read_write.c:590
ksys_write+0x20f/0x4c0 fs/read_write.c:643
__do_sys_write fs/read_write.c:655 [inline]
__se_sys_write fs/read_write.c:652 [inline]
__x64_sys_write+0x93/0xe0 fs/read_write.c:652
do_syscall_64+0xd5/0x1f0
entry_SYSCALL_64_after_hwframe+0x6d/0x75
Uninit was created at:
slab_post_alloc_hook mm/slub.c:3804 [inline]
slab_alloc_node mm/slub.c:3845 [inline]
kmem_cache_alloc_node+0x613/0xc50 mm/slub.c:3888
kmalloc_reserve+0x13d/0x4a0 net/core/skbuff.c:577
__alloc_skb+0x35b/0x7a0 net/core/skbuff.c:668
alloc_skb include/linux/skbuff.h:1318 [inline]
alloc_skb_with_frags+0xc8/0xbf0 net/core/skbuff.c:6504
sock_alloc_send_pskb+0xa81/0xbf0 net/core/sock.c:2795
tun_alloc_skb drivers/net/tun.c:1525 [inline]
tun_get_user+0x209a/0x69e0 drivers/net/tun.c:1846
tun_chr_write_iter+0x3af/0x5d0 drivers/net/tun.c:2048
call_write_iter include/linux/fs.h:2108 [inline]
new_sync_write fs/read_write.c:497 [inline]
vfs_write+0xb63/0x1520 fs/read_write.c:590
ksys_write+0x20f/0x4c0 fs/read_write.c:643
__do_sys_write fs/read_write.c:655 [inline]
__se_sys_write fs/read_write.c:652 [inline]
__x64_sys_write+0x93/0xe0 fs/read_write.c:652
do_syscall_64+0xd5/0x1f0
entry_SYSCALL_64_after_hwframe+0x6d/0x75
CPU: 1 PID: 5045 Comm: syz-executor114 Not tainted 6.9.0-rc1-syzkaller-00021-g962490525cff #0(CVE-2024-35888)
In the Linux kernel, the following vulnerability has been resolved:
bpf, sockmap: Prevent lock inversion deadlock in map delete elem
syzkaller started using corpuses where a BPF tracing program deletes
elements from a sockmap/sockhash map. Because BPF tracing programs can be
invoked from any interrupt context, locks taken during a map_delete_elem
operation must be hardirq-safe. Otherwise a deadlock due to lock inversion
is possible, as reported by lockdep:
CPU0 CPU1
---- ----
lock(&amp;htab-&gt;buckets[i].lock);
local_irq_disable();
lock(&amp;host-&gt;lock);
lock(&amp;htab-&gt;buckets[i].lock);
&lt;Interrupt&gt;
lock(&amp;host-&gt;lock);
Locks in sockmap are hardirq-unsafe by design. We expects elements to be
deleted from sockmap/sockhash only in task (normal) context with interrupts
enabled, or in softirq context.
Detect when map_delete_elem operation is invoked from a context which is
_not_ hardirq-unsafe, that is interrupts are disabled, and bail out with an
error.
Note that map updates are not affected by this issue. BPF verifier does not
allow updating sockmap/sockhash from a BPF tracing program today.(CVE-2024-35895)
In the Linux kernel, the following vulnerability has been resolved:
netfilter: validate user input for expected length
I got multiple syzbot reports showing old bugs exposed
by BPF after commit 20f2505fb436 (&quot;bpf: Try to avoid kzalloc
in cgroup/{s,g}etsockopt&quot;)
setsockopt() @optlen argument should be taken into account
before copying data.
BUG: KASAN: slab-out-of-bounds in copy_from_sockptr_offset include/linux/sockptr.h:49 [inline]
BUG: KASAN: slab-out-of-bounds in copy_from_sockptr include/linux/sockptr.h:55 [inline]
BUG: KASAN: slab-out-of-bounds in do_replace net/ipv4/netfilter/ip_tables.c:1111 [inline]
BUG: KASAN: slab-out-of-bounds in do_ipt_set_ctl+0x902/0x3dd0 net/ipv4/netfilter/ip_tables.c:1627
Read of size 96 at addr ffff88802cd73da0 by task syz-executor.4/7238
CPU: 1 PID: 7238 Comm: syz-executor.4 Not tainted 6.9.0-rc2-next-20240403-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024
Call Trace:
&lt;TASK&gt;
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:114
print_address_description mm/kasan/report.c:377 [inline]
print_report+0x169/0x550 mm/kasan/report.c:488
kasan_report+0x143/0x180 mm/kasan/report.c:601
kasan_check_range+0x282/0x290 mm/kasan/generic.c:189
__asan_memcpy+0x29/0x70 mm/kasan/shadow.c:105
copy_from_sockptr_offset include/linux/sockptr.h:49 [inline]
copy_from_sockptr include/linux/sockptr.h:55 [inline]
do_replace net/ipv4/netfilter/ip_tables.c:1111 [inline]
do_ipt_set_ctl+0x902/0x3dd0 net/ipv4/netfilter/ip_tables.c:1627
nf_setsockopt+0x295/0x2c0 net/netfilter/nf_sockopt.c:101
do_sock_setsockopt+0x3af/0x720 net/socket.c:2311
__sys_setsockopt+0x1ae/0x250 net/socket.c:2334
__do_sys_setsockopt net/socket.c:2343 [inline]
__se_sys_setsockopt net/socket.c:2340 [inline]
__x64_sys_setsockopt+0xb5/0xd0 net/socket.c:2340
do_syscall_64+0xfb/0x240
entry_SYSCALL_64_after_hwframe+0x72/0x7a
RIP: 0033:0x7fd22067dde9
Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 e1 20 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 &lt;48&gt; 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007fd21f9ff0c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000036
RAX: ffffffffffffffda RBX: 00007fd2207abf80 RCX: 00007fd22067dde9
RDX: 0000000000000040 RSI: 0000000000000000 RDI: 0000000000000003
RBP: 00007fd2206ca47a R08: 0000000000000001 R09: 0000000000000000
R10: 0000000020000880 R11: 0000000000000246 R12: 0000000000000000
R13: 000000000000000b R14: 00007fd2207abf80 R15: 00007ffd2d0170d8
&lt;/TASK&gt;
Allocated by task 7238:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:370 [inline]
__kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:387
kasan_kmalloc include/linux/kasan.h:211 [inline]
__do_kmalloc_node mm/slub.c:4069 [inline]
__kmalloc_noprof+0x200/0x410 mm/slub.c:4082
kmalloc_noprof include/linux/slab.h:664 [inline]
__cgroup_bpf_run_filter_setsockopt+0xd47/0x1050 kernel/bpf/cgroup.c:1869
do_sock_setsockopt+0x6b4/0x720 net/socket.c:2293
__sys_setsockopt+0x1ae/0x250 net/socket.c:2334
__do_sys_setsockopt net/socket.c:2343 [inline]
__se_sys_setsockopt net/socket.c:2340 [inline]
__x64_sys_setsockopt+0xb5/0xd0 net/socket.c:2340
do_syscall_64+0xfb/0x240
entry_SYSCALL_64_after_hwframe+0x72/0x7a
The buggy address belongs to the object at ffff88802cd73da0
which belongs to the cache kmalloc-8 of size 8
The buggy address is located 0 bytes inside of
allocated 1-byte region [ffff88802cd73da0, ffff88802cd73da1)
The buggy address belongs to the physical page:
page: refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff88802cd73020 pfn:0x2cd73
flags: 0xfff80000000000(node=0|zone=1|lastcpupid=0xfff)
page_type: 0xffffefff(slab)
raw: 00fff80000000000 ffff888015041280 dead000000000100 dead000000000122
raw: ffff88802cd73020 000000008080007f 00000001ffffefff 00
---truncated---(CVE-2024-35896)
In the Linux kernel, the following vulnerability has been resolved:
bpf: Protect against int overflow for stack access size
This patch re-introduces protection against the size of access to stack
memory being negative; the access size can appear negative as a result
of overflowing its signed int representation. This should not actually
happen, as there are other protections along the way, but we should
protect against it anyway. One code path was missing such protections
(fixed in the previous patch in the series), causing out-of-bounds array
accesses in check_stack_range_initialized(). This patch causes the
verification of a program with such a non-sensical access size to fail.
This check used to exist in a more indirect way, but was inadvertendly
removed in a833a17aeac7.(CVE-2024-35905)
In the Linux kernel, the following vulnerability has been resolved:
usb: typec: ucsi: Limit read size on v1.2
Between UCSI 1.2 and UCSI 2.0, the size of the MESSAGE_IN region was
increased from 16 to 256. In order to avoid overflowing reads for older
systems, add a mechanism to use the read UCSI version to truncate read
sizes on UCSI v1.2.(CVE-2024-35924)
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: SCO: Fix not validating setsockopt user input
syzbot reported sco_sock_setsockopt() is copying data without
checking user input length.
BUG: KASAN: slab-out-of-bounds in copy_from_sockptr_offset
include/linux/sockptr.h:49 [inline]
BUG: KASAN: slab-out-of-bounds in copy_from_sockptr
include/linux/sockptr.h:55 [inline]
BUG: KASAN: slab-out-of-bounds in sco_sock_setsockopt+0xc0b/0xf90
net/bluetooth/sco.c:893
Read of size 4 at addr ffff88805f7b15a3 by task syz-executor.5/12578(CVE-2024-35967)
In the Linux kernel, the following vulnerability has been resolved:
geneve: fix header validation in geneve[6]_xmit_skb
syzbot is able to trigger an uninit-value in geneve_xmit() [1]
Problem : While most ip tunnel helpers (like ip_tunnel_get_dsfield())
uses skb_protocol(skb, true), pskb_inet_may_pull() is only using
skb-&gt;protocol.
If anything else than ETH_P_IPV6 or ETH_P_IP is found in skb-&gt;protocol,
pskb_inet_may_pull() does nothing at all.
If a vlan tag was provided by the caller (af_packet in the syzbot case),
the network header might not point to the correct location, and skb
linear part could be smaller than expected.
Add skb_vlan_inet_prepare() to perform a complete mac validation.
Use this in geneve for the moment, I suspect we need to adopt this
more broadly.
v4 - Jakub reported v3 broke l2_tos_ttl_inherit.sh selftest
- Only call __vlan_get_protocol() for vlan types.
v2,v3 - Addressed Sabrina comments on v1 and v2
[1]
BUG: KMSAN: uninit-value in geneve_xmit_skb drivers/net/geneve.c:910 [inline]
BUG: KMSAN: uninit-value in geneve_xmit+0x302d/0x5420 drivers/net/geneve.c:1030
geneve_xmit_skb drivers/net/geneve.c:910 [inline]
geneve_xmit+0x302d/0x5420 drivers/net/geneve.c:1030
__netdev_start_xmit include/linux/netdevice.h:4903 [inline]
netdev_start_xmit include/linux/netdevice.h:4917 [inline]
xmit_one net/core/dev.c:3531 [inline]
dev_hard_start_xmit+0x247/0xa20 net/core/dev.c:3547
__dev_queue_xmit+0x348d/0x52c0 net/core/dev.c:4335
dev_queue_xmit include/linux/netdevice.h:3091 [inline]
packet_xmit+0x9c/0x6c0 net/packet/af_packet.c:276
packet_snd net/packet/af_packet.c:3081 [inline]
packet_sendmsg+0x8bb0/0x9ef0 net/packet/af_packet.c:3113
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0x30f/0x380 net/socket.c:745
__sys_sendto+0x685/0x830 net/socket.c:2191
__do_sys_sendto net/socket.c:2203 [inline]
__se_sys_sendto net/socket.c:2199 [inline]
__x64_sys_sendto+0x125/0x1d0 net/socket.c:2199
do_syscall_64+0xd5/0x1f0
entry_SYSCALL_64_after_hwframe+0x6d/0x75
Uninit was created at:
slab_post_alloc_hook mm/slub.c:3804 [inline]
slab_alloc_node mm/slub.c:3845 [inline]
kmem_cache_alloc_node+0x613/0xc50 mm/slub.c:3888
kmalloc_reserve+0x13d/0x4a0 net/core/skbuff.c:577
__alloc_skb+0x35b/0x7a0 net/core/skbuff.c:668
alloc_skb include/linux/skbuff.h:1318 [inline]
alloc_skb_with_frags+0xc8/0xbf0 net/core/skbuff.c:6504
sock_alloc_send_pskb+0xa81/0xbf0 net/core/sock.c:2795
packet_alloc_skb net/packet/af_packet.c:2930 [inline]
packet_snd net/packet/af_packet.c:3024 [inline]
packet_sendmsg+0x722d/0x9ef0 net/packet/af_packet.c:3113
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0x30f/0x380 net/socket.c:745
__sys_sendto+0x685/0x830 net/socket.c:2191
__do_sys_sendto net/socket.c:2203 [inline]
__se_sys_sendto net/socket.c:2199 [inline]
__x64_sys_sendto+0x125/0x1d0 net/socket.c:2199
do_syscall_64+0xd5/0x1f0
entry_SYSCALL_64_after_hwframe+0x6d/0x75
CPU: 0 PID: 5033 Comm: syz-executor346 Not tainted 6.9.0-rc1-syzkaller-00005-g928a87efa423 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 02/29/2024(CVE-2024-35973)
In the Linux kernel, the following vulnerability has been resolved:
batman-adv: Avoid infinite loop trying to resize local TT
If the MTU of one of an attached interface becomes too small to transmit
the local translation table then it must be resized to fit inside all
fragments (when enabled) or a single packet.
But if the MTU becomes too low to transmit even the header + the VLAN
specific part then the resizing of the local TT will never succeed. This
can for example happen when the usable space is 110 bytes and 11 VLANs are
on top of batman-adv. In this case, at least 116 byte would be needed.
There will just be an endless spam of
batman_adv: batadv0: Forced to purge local tt entries to fit new maximum fragment MTU (110)
in the log but the function will never finish. Problem here is that the
timeout will be halved all the time and will then stagnate at 0 and
therefore never be able to reduce the table even more.
There are other scenarios possible with a similar result. The number of
BATADV_TT_CLIENT_NOPURGE entries in the local TT can for example be too
high to fit inside a packet. Such a scenario can therefore happen also with
only a single VLAN + 7 non-purgable addresses - requiring at least 120
bytes.
While this should be handled proactively when:
* interface with too low MTU is added
* VLAN is added
* non-purgeable local mac is added
* MTU of an attached interface is reduced
* fragmentation setting gets disabled (which most likely requires dropping
attached interfaces)
not all of these scenarios can be prevented because batman-adv is only
consuming events without the the possibility to prevent these actions
(non-purgable MAC address added, MTU of an attached interface is reduced).
It is therefore necessary to also make sure that the code is able to handle
also the situations when there were already incompatible system
configuration are present.(CVE-2024-35982)
In the Linux kernel, the following vulnerability has been resolved:
i2c: smbus: fix NULL function pointer dereference
Baruch reported an OOPS when using the designware controller as target
only. Target-only modes break the assumption of one transfer function
always being available. Fix this by always checking the pointer in
__i2c_transfer.
[wsa: dropped the simplification in core-smbus to avoid theoretical regressions](CVE-2024-35984)
In the Linux kernel, the following vulnerability has been resolved:
rtnetlink: Correct nested IFLA_VF_VLAN_LIST attribute validation
Each attribute inside a nested IFLA_VF_VLAN_LIST is assumed to be a
struct ifla_vf_vlan_info so the size of such attribute needs to be at least
of sizeof(struct ifla_vf_vlan_info) which is 14 bytes.
The current size validation in do_setvfinfo is against NLA_HDRLEN (4 bytes)
which is less than sizeof(struct ifla_vf_vlan_info) so this validation
is not enough and a too small attribute might be cast to a
struct ifla_vf_vlan_info, this might result in an out of bands
read access when accessing the saved (casted) entry in ivvl.(CVE-2024-36017)
In the Linux kernel, the following vulnerability has been resolved:
mmc: sdhci-msm: pervent access to suspended controller
Generic sdhci code registers LED device and uses host-&gt;runtime_suspended
flag to protect access to it. The sdhci-msm driver doesn&apos;t set this flag,
which causes a crash when LED is accessed while controller is runtime
suspended. Fix this by setting the flag correctly.(CVE-2024-36029)
In the Linux kernel, the following vulnerability has been resolved:
net: fix out-of-bounds access in ops_init
net_alloc_generic is called by net_alloc, which is called without any
locking. It reads max_gen_ptrs, which is changed under pernet_ops_rwsem. It
is read twice, first to allocate an array, then to set s.len, which is
later used to limit the bounds of the array access.
It is possible that the array is allocated and another thread is
registering a new pernet ops, increments max_gen_ptrs, which is then used
to set s.len with a larger than allocated length for the variable array.
Fix it by reading max_gen_ptrs only once in net_alloc_generic. If
max_gen_ptrs is later incremented, it will be caught in net_assign_generic.(CVE-2024-36883)
In the Linux kernel, the following vulnerability has been resolved:
tipc: fix UAF in error path
Sam Page (sam4k) working with Trend Micro Zero Day Initiative reported
a UAF in the tipc_buf_append() error path:
BUG: KASAN: slab-use-after-free in kfree_skb_list_reason+0x47e/0x4c0
linux/net/core/skbuff.c:1183
Read of size 8 at addr ffff88804d2a7c80 by task poc/8034
CPU: 1 PID: 8034 Comm: poc Not tainted 6.8.2 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.16.0-debian-1.16.0-5 04/01/2014
Call Trace:
&lt;IRQ&gt;
__dump_stack linux/lib/dump_stack.c:88
dump_stack_lvl+0xd9/0x1b0 linux/lib/dump_stack.c:106
print_address_description linux/mm/kasan/report.c:377
print_report+0xc4/0x620 linux/mm/kasan/report.c:488
kasan_report+0xda/0x110 linux/mm/kasan/report.c:601
kfree_skb_list_reason+0x47e/0x4c0 linux/net/core/skbuff.c:1183
skb_release_data+0x5af/0x880 linux/net/core/skbuff.c:1026
skb_release_all linux/net/core/skbuff.c:1094
__kfree_skb linux/net/core/skbuff.c:1108
kfree_skb_reason+0x12d/0x210 linux/net/core/skbuff.c:1144
kfree_skb linux/./include/linux/skbuff.h:1244
tipc_buf_append+0x425/0xb50 linux/net/tipc/msg.c:186
tipc_link_input+0x224/0x7c0 linux/net/tipc/link.c:1324
tipc_link_rcv+0x76e/0x2d70 linux/net/tipc/link.c:1824
tipc_rcv+0x45f/0x10f0 linux/net/tipc/node.c:2159
tipc_udp_recv+0x73b/0x8f0 linux/net/tipc/udp_media.c:390
udp_queue_rcv_one_skb+0xad2/0x1850 linux/net/ipv4/udp.c:2108
udp_queue_rcv_skb+0x131/0xb00 linux/net/ipv4/udp.c:2186
udp_unicast_rcv_skb+0x165/0x3b0 linux/net/ipv4/udp.c:2346
__udp4_lib_rcv+0x2594/0x3400 linux/net/ipv4/udp.c:2422
ip_protocol_deliver_rcu+0x30c/0x4e0 linux/net/ipv4/ip_input.c:205
ip_local_deliver_finish+0x2e4/0x520 linux/net/ipv4/ip_input.c:233
NF_HOOK linux/./include/linux/netfilter.h:314
NF_HOOK linux/./include/linux/netfilter.h:308
ip_local_deliver+0x18e/0x1f0 linux/net/ipv4/ip_input.c:254
dst_input linux/./include/net/dst.h:461
ip_rcv_finish linux/net/ipv4/ip_input.c:449
NF_HOOK linux/./include/linux/netfilter.h:314
NF_HOOK linux/./include/linux/netfilter.h:308
ip_rcv+0x2c5/0x5d0 linux/net/ipv4/ip_input.c:569
__netif_receive_skb_one_core+0x199/0x1e0 linux/net/core/dev.c:5534
__netif_receive_skb+0x1f/0x1c0 linux/net/core/dev.c:5648
process_backlog+0x101/0x6b0 linux/net/core/dev.c:5976
__napi_poll.constprop.0+0xba/0x550 linux/net/core/dev.c:6576
napi_poll linux/net/core/dev.c:6645
net_rx_action+0x95a/0xe90 linux/net/core/dev.c:6781
__do_softirq+0x21f/0x8e7 linux/kernel/softirq.c:553
do_softirq linux/kernel/softirq.c:454
do_softirq+0xb2/0xf0 linux/kernel/softirq.c:441
&lt;/IRQ&gt;
&lt;TASK&gt;
__local_bh_enable_ip+0x100/0x120 linux/kernel/softirq.c:381
local_bh_enable linux/./include/linux/bottom_half.h:33
rcu_read_unlock_bh linux/./include/linux/rcupdate.h:851
__dev_queue_xmit+0x871/0x3ee0 linux/net/core/dev.c:4378
dev_queue_xmit linux/./include/linux/netdevice.h:3169
neigh_hh_output linux/./include/net/neighbour.h:526
neigh_output linux/./include/net/neighbour.h:540
ip_finish_output2+0x169f/0x2550 linux/net/ipv4/ip_output.c:235
__ip_finish_output linux/net/ipv4/ip_output.c:313
__ip_finish_output+0x49e/0x950 linux/net/ipv4/ip_output.c:295
ip_finish_output+0x31/0x310 linux/net/ipv4/ip_output.c:323
NF_HOOK_COND linux/./include/linux/netfilter.h:303
ip_output+0x13b/0x2a0 linux/net/ipv4/ip_output.c:433
dst_output linux/./include/net/dst.h:451
ip_local_out linux/net/ipv4/ip_output.c:129
ip_send_skb+0x3e5/0x560 linux/net/ipv4/ip_output.c:1492
udp_send_skb+0x73f/0x1530 linux/net/ipv4/udp.c:963
udp_sendmsg+0x1a36/0x2b40 linux/net/ipv4/udp.c:1250
inet_sendmsg+0x105/0x140 linux/net/ipv4/af_inet.c:850
sock_sendmsg_nosec linux/net/socket.c:730
__sock_sendmsg linux/net/socket.c:745
__sys_sendto+0x42c/0x4e0 linux/net/socket.c:2191
__do_sys_sendto linux/net/socket.c:2203
__se_sys_sendto linux/net/socket.c:2199
__x64_sys_sendto+0xe0/0x1c0 linux/net/socket.c:2199
do_syscall_x64 linux/arch/x86/entry/common.c:52
do_syscall_
---truncated---(CVE-2024-36886)
In the Linux kernel, the following vulnerability has been resolved:
mptcp: ensure snd_nxt is properly initialized on connect
Christoph reported a splat hinting at a corrupted snd_una:
WARNING: CPU: 1 PID: 38 at net/mptcp/protocol.c:1005 __mptcp_clean_una+0x4b3/0x620 net/mptcp/protocol.c:1005
Modules linked in:
CPU: 1 PID: 38 Comm: kworker/1:1 Not tainted 6.9.0-rc1-gbbeac67456c9 #59
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-2.el7 04/01/2014
Workqueue: events mptcp_worker
RIP: 0010:__mptcp_clean_una+0x4b3/0x620 net/mptcp/protocol.c:1005
Code: be 06 01 00 00 bf 06 01 00 00 e8 a8 12 e7 fe e9 00 fe ff ff e8
8e 1a e7 fe 0f b7 ab 3e 02 00 00 e9 d3 fd ff ff e8 7d 1a e7 fe
&lt;0f&gt; 0b 4c 8b bb e0 05 00 00 e9 74 fc ff ff e8 6a 1a e7 fe 0f 0b e9
RSP: 0018:ffffc9000013fd48 EFLAGS: 00010293
RAX: 0000000000000000 RBX: ffff8881029bd280 RCX: ffffffff82382fe4
RDX: ffff8881003cbd00 RSI: ffffffff823833c3 RDI: 0000000000000001
RBP: 0000000000000000 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000000 R11: fefefefefefefeff R12: ffff888138ba8000
R13: 0000000000000106 R14: ffff8881029bd908 R15: ffff888126560000
FS: 0000000000000000(0000) GS:ffff88813bd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f604a5dae38 CR3: 0000000101dac002 CR4: 0000000000170ef0
Call Trace:
&lt;TASK&gt;
__mptcp_clean_una_wakeup net/mptcp/protocol.c:1055 [inline]
mptcp_clean_una_wakeup net/mptcp/protocol.c:1062 [inline]
__mptcp_retrans+0x7f/0x7e0 net/mptcp/protocol.c:2615
mptcp_worker+0x434/0x740 net/mptcp/protocol.c:2767
process_one_work+0x1e0/0x560 kernel/workqueue.c:3254
process_scheduled_works kernel/workqueue.c:3335 [inline]
worker_thread+0x3c7/0x640 kernel/workqueue.c:3416
kthread+0x121/0x170 kernel/kthread.c:388
ret_from_fork+0x44/0x50 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:243
&lt;/TASK&gt;
When fallback to TCP happens early on a client socket, snd_nxt
is not yet initialized and any incoming ack will copy such value
into snd_una. If the mptcp worker (dumbly) tries mptcp-level
re-injection after such ack, that would unconditionally trigger a send
buffer cleanup using &apos;bad&apos; snd_una values.
We could easily disable re-injection for fallback sockets, but such
dumb behavior already helped catching a few subtle issues and a very
low to zero impact in practice.
Instead address the issue always initializing snd_nxt (and write_seq,
for consistency) at connect time.(CVE-2024-36889)
In the Linux kernel, the following vulnerability has been resolved:
gpiolib: cdev: fix uninitialised kfifo
If a line is requested with debounce, and that results in debouncing
in software, and the line is subsequently reconfigured to enable edge
detection then the allocation of the kfifo to contain edge events is
overlooked. This results in events being written to and read from an
uninitialised kfifo. Read events are returned to userspace.
Initialise the kfifo in the case where the software debounce is
already active.(CVE-2024-36898)
In the Linux kernel, the following vulnerability has been resolved:
gpiolib: cdev: Fix use after free in lineinfo_changed_notify
The use-after-free issue occurs as follows: when the GPIO chip device file
is being closed by invoking gpio_chrdev_release(), watched_lines is freed
by bitmap_free(), but the unregistration of lineinfo_changed_nb notifier
chain failed due to waiting write rwsem. Additionally, one of the GPIO
chip&apos;s lines is also in the release process and holds the notifier chain&apos;s
read rwsem. Consequently, a race condition leads to the use-after-free of
watched_lines.
Here is the typical stack when issue happened:
[free]
gpio_chrdev_release()
--&gt; bitmap_free(cdev-&gt;watched_lines) &lt;-- freed
--&gt; blocking_notifier_chain_unregister()
--&gt; down_write(&amp;nh-&gt;rwsem) &lt;-- waiting rwsem
--&gt; __down_write_common()
--&gt; rwsem_down_write_slowpath()
--&gt; schedule_preempt_disabled()
--&gt; schedule()
[use]
st54spi_gpio_dev_release()
--&gt; gpio_free()
--&gt; gpiod_free()
--&gt; gpiod_free_commit()
--&gt; gpiod_line_state_notify()
--&gt; blocking_notifier_call_chain()
--&gt; down_read(&amp;nh-&gt;rwsem); &lt;-- held rwsem
--&gt; notifier_call_chain()
--&gt; lineinfo_changed_notify()
--&gt; test_bit(xxxx, cdev-&gt;watched_lines) &lt;-- use after free
The side effect of the use-after-free issue is that a GPIO line event is
being generated for userspace where it shouldn&apos;t. However, since the chrdev
is being closed, userspace won&apos;t have the chance to read that event anyway.
To fix the issue, call the bitmap_free() function after the unregistration
of lineinfo_changed_nb notifier chain.(CVE-2024-36899)
In the Linux kernel, the following vulnerability has been resolved:
ipv6: prevent NULL dereference in ip6_output()
According to syzbot, there is a chance that ip6_dst_idev()
returns NULL in ip6_output(). Most places in IPv6 stack
deal with a NULL idev just fine, but not here.
syzbot reported:
general protection fault, probably for non-canonical address 0xdffffc00000000bc: 0000 [#1] PREEMPT SMP KASAN PTI
KASAN: null-ptr-deref in range [0x00000000000005e0-0x00000000000005e7]
CPU: 0 PID: 9775 Comm: syz-executor.4 Not tainted 6.9.0-rc5-syzkaller-00157-g6a30653b604a #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024
RIP: 0010:ip6_output+0x231/0x3f0 net/ipv6/ip6_output.c:237
Code: 3c 1e 00 49 89 df 74 08 4c 89 ef e8 19 58 db f7 48 8b 44 24 20 49 89 45 00 49 89 c5 48 8d 9d e0 05 00 00 48 89 d8 48 c1 e8 03 &lt;42&gt; 0f b6 04 38 84 c0 4c 8b 74 24 28 0f 85 61 01 00 00 8b 1b 31 ff
RSP: 0018:ffffc9000927f0d8 EFLAGS: 00010202
RAX: 00000000000000bc RBX: 00000000000005e0 RCX: 0000000000040000
RDX: ffffc900131f9000 RSI: 0000000000004f47 RDI: 0000000000004f48
RBP: 0000000000000000 R08: ffffffff8a1f0b9a R09: 1ffffffff1f51fad
R10: dffffc0000000000 R11: fffffbfff1f51fae R12: ffff8880293ec8c0
R13: ffff88805d7fc000 R14: 1ffff1100527d91a R15: dffffc0000000000
FS: 00007f135c6856c0(0000) GS:ffff8880b9400000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000020000080 CR3: 0000000064096000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
&lt;TASK&gt;
NF_HOOK include/linux/netfilter.h:314 [inline]
ip6_xmit+0xefe/0x17f0 net/ipv6/ip6_output.c:358
sctp_v6_xmit+0x9f2/0x13f0 net/sctp/ipv6.c:248
sctp_packet_transmit+0x26ad/0x2ca0 net/sctp/output.c:653
sctp_packet_singleton+0x22c/0x320 net/sctp/outqueue.c:783
sctp_outq_flush_ctrl net/sctp/outqueue.c:914 [inline]
sctp_outq_flush+0x6d5/0x3e20 net/sctp/outqueue.c:1212
sctp_side_effects net/sctp/sm_sideeffect.c:1198 [inline]
sctp_do_sm+0x59cc/0x60c0 net/sctp/sm_sideeffect.c:1169
sctp_primitive_ASSOCIATE+0x95/0xc0 net/sctp/primitive.c:73
__sctp_connect+0x9cd/0xe30 net/sctp/socket.c:1234
sctp_connect net/sctp/socket.c:4819 [inline]
sctp_inet_connect+0x149/0x1f0 net/sctp/socket.c:4834
__sys_connect_file net/socket.c:2048 [inline]
__sys_connect+0x2df/0x310 net/socket.c:2065
__do_sys_connect net/socket.c:2075 [inline]
__se_sys_connect net/socket.c:2072 [inline]
__x64_sys_connect+0x7a/0x90 net/socket.c:2072
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf5/0x240 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f(CVE-2024-36901)
In the Linux kernel, the following vulnerability has been resolved:
ipv6: fib6_rules: avoid possible NULL dereference in fib6_rule_action()
syzbot is able to trigger the following crash [1],
caused by unsafe ip6_dst_idev() use.
Indeed ip6_dst_idev() can return NULL, and must always be checked.
[1]
Oops: general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN PTI
KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007]
CPU: 0 PID: 31648 Comm: syz-executor.0 Not tainted 6.9.0-rc4-next-20240417-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024
RIP: 0010:__fib6_rule_action net/ipv6/fib6_rules.c:237 [inline]
RIP: 0010:fib6_rule_action+0x241/0x7b0 net/ipv6/fib6_rules.c:267
Code: 02 00 00 49 8d 9f d8 00 00 00 48 89 d8 48 c1 e8 03 42 80 3c 20 00 74 08 48 89 df e8 f9 32 bf f7 48 8b 1b 48 89 d8 48 c1 e8 03 &lt;42&gt; 80 3c 20 00 74 08 48 89 df e8 e0 32 bf f7 4c 8b 03 48 89 ef 4c
RSP: 0018:ffffc9000fc1f2f0 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 1a772f98c8186700
RDX: 0000000000000003 RSI: ffffffff8bcac4e0 RDI: ffffffff8c1f9760
RBP: ffff8880673fb980 R08: ffffffff8fac15ef R09: 1ffffffff1f582bd
R10: dffffc0000000000 R11: fffffbfff1f582be R12: dffffc0000000000
R13: 0000000000000080 R14: ffff888076509000 R15: ffff88807a029a00
FS: 00007f55e82ca6c0(0000) GS:ffff8880b9400000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000001b31d23000 CR3: 0000000022b66000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
&lt;TASK&gt;
fib_rules_lookup+0x62c/0xdb0 net/core/fib_rules.c:317
fib6_rule_lookup+0x1fd/0x790 net/ipv6/fib6_rules.c:108
ip6_route_output_flags_noref net/ipv6/route.c:2637 [inline]
ip6_route_output_flags+0x38e/0x610 net/ipv6/route.c:2649
ip6_route_output include/net/ip6_route.h:93 [inline]
ip6_dst_lookup_tail+0x189/0x11a0 net/ipv6/ip6_output.c:1120
ip6_dst_lookup_flow+0xb9/0x180 net/ipv6/ip6_output.c:1250
sctp_v6_get_dst+0x792/0x1e20 net/sctp/ipv6.c:326
sctp_transport_route+0x12c/0x2e0 net/sctp/transport.c:455
sctp_assoc_add_peer+0x614/0x15c0 net/sctp/associola.c:662
sctp_connect_new_asoc+0x31d/0x6c0 net/sctp/socket.c:1099
__sctp_connect+0x66d/0xe30 net/sctp/socket.c:1197
sctp_connect net/sctp/socket.c:4819 [inline]
sctp_inet_connect+0x149/0x1f0 net/sctp/socket.c:4834
__sys_connect_file net/socket.c:2048 [inline]
__sys_connect+0x2df/0x310 net/socket.c:2065
__do_sys_connect net/socket.c:2075 [inline]
__se_sys_connect net/socket.c:2072 [inline]
__x64_sys_connect+0x7a/0x90 net/socket.c:2072
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf5/0x240 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f(CVE-2024-36902)
In the Linux kernel, the following vulnerability has been resolved:
ipv6: Fix potential uninit-value access in __ip6_make_skb()
As it was done in commit fc1092f51567 (&quot;ipv4: Fix uninit-value access in
__ip_make_skb()&quot;) for IPv4, check FLOWI_FLAG_KNOWN_NH on fl6-&gt;flowi6_flags
instead of testing HDRINCL on the socket to avoid a race condition which
causes uninit-value access.(CVE-2024-36903)
In the Linux kernel, the following vulnerability has been resolved:
ARM: 9381/1: kasan: clear stale stack poison
We found below OOB crash:
[ 33.452494] ==================================================================
[ 33.453513] BUG: KASAN: stack-out-of-bounds in refresh_cpu_vm_stats.constprop.0+0xcc/0x2ec
[ 33.454660] Write of size 164 at addr c1d03d30 by task swapper/0/0
[ 33.455515]
[ 33.455767] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 6.1.25-mainline #1
[ 33.456880] Hardware name: Generic DT based system
[ 33.457555] unwind_backtrace from show_stack+0x18/0x1c
[ 33.458326] show_stack from dump_stack_lvl+0x40/0x4c
[ 33.459072] dump_stack_lvl from print_report+0x158/0x4a4
[ 33.459863] print_report from kasan_report+0x9c/0x148
[ 33.460616] kasan_report from kasan_check_range+0x94/0x1a0
[ 33.461424] kasan_check_range from memset+0x20/0x3c
[ 33.462157] memset from refresh_cpu_vm_stats.constprop.0+0xcc/0x2ec
[ 33.463064] refresh_cpu_vm_stats.constprop.0 from tick_nohz_idle_stop_tick+0x180/0x53c
[ 33.464181] tick_nohz_idle_stop_tick from do_idle+0x264/0x354
[ 33.465029] do_idle from cpu_startup_entry+0x20/0x24
[ 33.465769] cpu_startup_entry from rest_init+0xf0/0xf4
[ 33.466528] rest_init from arch_post_acpi_subsys_init+0x0/0x18
[ 33.467397]
[ 33.467644] The buggy address belongs to stack of task swapper/0/0
[ 33.468493] and is located at offset 112 in frame:
[ 33.469172] refresh_cpu_vm_stats.constprop.0+0x0/0x2ec
[ 33.469917]
[ 33.470165] This frame has 2 objects:
[ 33.470696] [32, 76) &apos;global_zone_diff&apos;
[ 33.470729] [112, 276) &apos;global_node_diff&apos;
[ 33.471294]
[ 33.472095] The buggy address belongs to the physical page:
[ 33.472862] page:3cd72da8 refcount:1 mapcount:0 mapping:00000000 index:0x0 pfn:0x41d03
[ 33.473944] flags: 0x1000(reserved|zone=0)
[ 33.474565] raw: 00001000 ed741470 ed741470 00000000 00000000 00000000 ffffffff 00000001
[ 33.475656] raw: 00000000
[ 33.476050] page dumped because: kasan: bad access detected
[ 33.476816]
[ 33.477061] Memory state around the buggy address:
[ 33.477732] c1d03c00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[ 33.478630] c1d03c80: 00 00 00 00 00 00 00 00 f1 f1 f1 f1 00 00 00 00
[ 33.479526] &gt;c1d03d00: 00 04 f2 f2 f2 f2 00 00 00 00 00 00 f1 f1 f1 f1
[ 33.480415] ^
[ 33.481195] c1d03d80: 00 00 00 00 00 00 00 00 00 00 04 f3 f3 f3 f3 f3
[ 33.482088] c1d03e00: f3 f3 f3 f3 00 00 00 00 00 00 00 00 00 00 00 00
[ 33.482978] ==================================================================
We find the root cause of this OOB is that arm does not clear stale stack
poison in the case of cpuidle.
This patch refer to arch/arm64/kernel/sleep.S to resolve this issue.
From cited commit [1] that explain the problem
Functions which the compiler has instrumented for KASAN place poison on
the stack shadow upon entry and remove this poison prior to returning.
In the case of cpuidle, CPUs exit the kernel a number of levels deep in
C code. Any instrumented functions on this critical path will leave
portions of the stack shadow poisoned.
If CPUs lose context and return to the kernel via a cold path, we
restore a prior context saved in __cpu_suspend_enter are forgotten, and
we never remove the poison they placed in the stack shadow area by
functions calls between this and the actual exit of the kernel.
Thus, (depending on stackframe layout) subsequent calls to instrumented
functions may hit this stale poison, resulting in (spurious) KASAN
splats to the console.
To avoid this, clear any stale poison from the idle thread for a CPU
prior to bringing a CPU online.
From cited commit [2]
Extend to check for CONFIG_KASAN_STACK
[1] commit 0d97e6d8024c (&quot;arm64: kasan: clear stale stack poison&quot;)
[2] commit d56a9ef84bd0 (&quot;kasan, arm64: unpoison stack only with CONFIG_KASAN_STACK&quot;)(CVE-2024-36906)
In the Linux kernel, the following vulnerability has been resolved:
blk-iocost: do not WARN if iocg was already offlined
In iocg_pay_debt(), warn is triggered if &apos;active_list&apos; is empty, which
is intended to confirm iocg is active when it has debt. However, warn
can be triggered during a blkcg or disk removal, if iocg_waitq_timer_fn()
is run at that time:
WARNING: CPU: 0 PID: 2344971 at block/blk-iocost.c:1402 iocg_pay_debt+0x14c/0x190
Call trace:
iocg_pay_debt+0x14c/0x190
iocg_kick_waitq+0x438/0x4c0
iocg_waitq_timer_fn+0xd8/0x130
__run_hrtimer+0x144/0x45c
__hrtimer_run_queues+0x16c/0x244
hrtimer_interrupt+0x2cc/0x7b0
The warn in this situation is meaningless. Since this iocg is being
removed, the state of the &apos;active_list&apos; is irrelevant, and &apos;waitq_timer&apos;
is canceled after removing &apos;active_list&apos; in ioc_pd_free(), which ensures
iocg is freed after iocg_waitq_timer_fn() returns.
Therefore, add the check if iocg was already offlined to avoid warn
when removing a blkcg or disk.(CVE-2024-36908)
In the Linux kernel, the following vulnerability has been resolved:
block: fix overflow in blk_ioctl_discard()
There is no check for overflow of &apos;start + len&apos; in blk_ioctl_discard().
Hung task occurs if submit an discard ioctl with the following param:
start = 0x80000000000ff000, len = 0x8000000000fff000;
Add the overflow validation now.(CVE-2024-36917)
In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Release hbalock before calling lpfc_worker_wake_up()
lpfc_worker_wake_up() calls the lpfc_work_done() routine, which takes the
hbalock. Thus, lpfc_worker_wake_up() should not be called while holding the
hbalock to avoid potential deadlock.(CVE-2024-36924)
In the Linux kernel, the following vulnerability has been resolved:
s390/qeth: Fix kernel panic after setting hsuid
Symptom:
When the hsuid attribute is set for the first time on an IQD Layer3
device while the corresponding network interface is already UP,
the kernel will try to execute a napi function pointer that is NULL.
Example:
---------------------------------------------------------------------------
[ 2057.572696] illegal operation: 0001 ilc:1 [#1] SMP
[ 2057.572702] Modules linked in: af_iucv qeth_l3 zfcp scsi_transport_fc sunrpc nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6
nft_reject nft_ct nf_tables_set nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip_set nf_tables libcrc32c nfnetlink ghash_s390 prng xts aes_s390 des_s390 de
s_generic sha3_512_s390 sha3_256_s390 sha512_s390 vfio_ccw vfio_mdev mdev vfio_iommu_type1 eadm_sch vfio ext4 mbcache jbd2 qeth_l2 bridge stp llc dasd_eckd_mod qeth dasd_mod
qdio ccwgroup pkey zcrypt
[ 2057.572739] CPU: 6 PID: 60182 Comm: stress_client Kdump: loaded Not tainted 4.18.0-541.el8.s390x #1
[ 2057.572742] Hardware name: IBM 3931 A01 704 (LPAR)
[ 2057.572744] Krnl PSW : 0704f00180000000 0000000000000002 (0x2)
[ 2057.572748] R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:3 PM:0 RI:0 EA:3
[ 2057.572751] Krnl GPRS: 0000000000000004 0000000000000000 00000000a3b008d8 0000000000000000
[ 2057.572754] 00000000a3b008d8 cb923a29c779abc5 0000000000000000 00000000814cfd80
[ 2057.572756] 000000000000012c 0000000000000000 00000000a3b008d8 00000000a3b008d8
[ 2057.572758] 00000000bab6d500 00000000814cfd80 0000000091317e46 00000000814cfc68
[ 2057.572762] Krnl Code:#0000000000000000: 0000 illegal
&gt;0000000000000002: 0000 illegal
0000000000000004: 0000 illegal
0000000000000006: 0000 illegal
0000000000000008: 0000 illegal
000000000000000a: 0000 illegal
000000000000000c: 0000 illegal
000000000000000e: 0000 illegal
[ 2057.572800] Call Trace:
[ 2057.572801] ([&lt;00000000ec639700&gt;] 0xec639700)
[ 2057.572803] [&lt;00000000913183e2&gt;] net_rx_action+0x2ba/0x398
[ 2057.572809] [&lt;0000000091515f76&gt;] __do_softirq+0x11e/0x3a0
[ 2057.572813] [&lt;0000000090ce160c&gt;] do_softirq_own_stack+0x3c/0x58
[ 2057.572817] ([&lt;0000000090d2cbd6&gt;] do_softirq.part.1+0x56/0x60)
[ 2057.572822] [&lt;0000000090d2cc60&gt;] __local_bh_enable_ip+0x80/0x98
[ 2057.572825] [&lt;0000000091314706&gt;] __dev_queue_xmit+0x2be/0xd70
[ 2057.572827] [&lt;000003ff803dd6d6&gt;] afiucv_hs_send+0x24e/0x300 [af_iucv]
[ 2057.572830] [&lt;000003ff803dd88a&gt;] iucv_send_ctrl+0x102/0x138 [af_iucv]
[ 2057.572833] [&lt;000003ff803de72a&gt;] iucv_sock_connect+0x37a/0x468 [af_iucv]
[ 2057.572835] [&lt;00000000912e7e90&gt;] __sys_connect+0xa0/0xd8
[ 2057.572839] [&lt;00000000912e9580&gt;] sys_socketcall+0x228/0x348
[ 2057.572841] [&lt;0000000091514e1a&gt;] system_call+0x2a6/0x2c8
[ 2057.572843] Last Breaking-Event-Address:
[ 2057.572844] [&lt;0000000091317e44&gt;] __napi_poll+0x4c/0x1d8
[ 2057.572846]
[ 2057.572847] Kernel panic - not syncing: Fatal exception in interrupt
-------------------------------------------------------------------------------------------
Analysis:
There is one napi structure per out_q: card-&gt;qdio.out_qs[i].napi
The napi.poll functions are set during qeth_open().
Since
commit 1cfef80d4c2b (&quot;s390/qeth: Don&apos;t call dev_close/dev_open (DOWN/UP)&quot;)
qeth_set_offline()/qeth_set_online() no longer call dev_close()/
dev_open(). So if qeth_free_qdio_queues() cleared
card-&gt;qdio.out_qs[i].napi.poll while the network interface was UP and the
card was offline, they are not set again.
Reproduction:
chzdev -e $devno layer2=0
ip link set dev $network_interface up
echo 0 &gt; /sys/bus/ccw
---truncated---(CVE-2024-36928)
In the Linux kernel, the following vulnerability has been resolved:
net: core: reject skb_copy(_expand) for fraglist GSO skbs
SKB_GSO_FRAGLIST skbs must not be linearized, otherwise they become
invalid. Return NULL if such an skb is passed to skb_copy or
skb_copy_expand, in order to prevent a crash on a potential later
call to skb_gso_segment.(CVE-2024-36929)
In the Linux kernel, the following vulnerability has been resolved:
amd/amdkfd: sync all devices to wait all processes being evicted
If there are more than one device doing reset in parallel, the first
device will call kfd_suspend_all_processes() to evict all processes
on all devices, this call takes time to finish. other device will
start reset and recover without waiting. if the process has not been
evicted before doing recover, it will be restored, then caused page
fault.(CVE-2024-36949)
In the Linux kernel, the following vulnerability has been resolved:
tipc: fix a possible memleak in tipc_buf_append
__skb_linearize() doesn&apos;t free the skb when it fails, so move
&apos;*buf = NULL&apos; after __skb_linearize(), so that the skb can be
freed on the err path.(CVE-2024-36954)
In the Linux kernel, the following vulnerability has been resolved:
octeontx2-af: avoid off-by-one read from userspace
We try to access count + 1 byte from userspace with memdup_user(buffer,
count + 1). However, the userspace only provides buffer of count bytes and
only these count bytes are verified to be okay to access. To ensure the
copied buffer is NUL terminated, we use memdup_user_nul instead.(CVE-2024-36957)
In the Linux kernel, the following vulnerability has been resolved:
fs/9p: only translate RWX permissions for plain 9P2000
Garbage in plain 9P2000&apos;s perm bits is allowed through, which causes it
to be able to set (among others) the suid bit. This was presumably not
the intent since the unix extended bits are handled explicitly and
conditionally on .u.(CVE-2024-36964)</Note>
<Note Title="Topic" Type="General" Ordinal="4" xml:lang="en">An update for kernel is now available for openEuler-22.03-LTS-SP3.
openEuler Security has rated this update as having a security impact of medium. A Common Vunlnerability Scoring System(CVSS)base score,which gives a detailed severity rating, is available for each vulnerability from the CVElink(s) in the References section.</Note>
<Note Title="Severity" Type="General" Ordinal="5" xml:lang="en">Medium</Note>
<Note Title="Affected Component" Type="General" Ordinal="6" xml:lang="en">kernel</Note>
</DocumentNotes>
<DocumentReferences>
<Reference Type="Self">
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Reference>
<Reference Type="openEuler CVE">
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2021-47247</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2021-47484</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2021-47558</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2022-48652</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52672</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52680</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52686</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52693</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52732</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52762</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52775</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52803</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52810</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52880</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2023-52881</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26835</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-26889</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-27393</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-27402</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-27408</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35790</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35809</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35811</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35853</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35854</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35871</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35888</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35895</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35896</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35905</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35924</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35967</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35973</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35982</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-35984</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-36017</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-36029</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-36883</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-36886</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-36889</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-36898</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-36899</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-36901</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-36902</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-36903</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-36906</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-36908</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-36917</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-36924</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-36928</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-36929</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-36949</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-36954</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-36957</URL>
<URL>https://www.openeuler.org/en/security/cve/detail.html?id=CVE-2024-36964</URL>
</Reference>
<Reference Type="Other">
<URL>https://nvd.nist.gov/vuln/detail/CVE-2021-47247</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2021-47484</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2021-47558</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2022-48652</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2023-52672</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2023-52680</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2023-52686</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2023-52693</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2023-52732</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2023-52762</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2023-52775</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2023-52803</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2023-52810</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2023-52880</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2023-52881</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26835</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-26889</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-27393</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-27402</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-27408</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-35790</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-35809</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-35811</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-35853</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-35854</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-35871</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-35888</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-35895</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-35896</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-35905</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-35924</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-35967</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-35973</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-35982</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-35984</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-36017</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-36029</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-36883</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-36886</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-36889</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-36898</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-36899</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-36901</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-36902</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-36903</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-36906</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-36908</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-36917</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-36924</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-36928</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-36929</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-36949</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-36954</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-36957</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-36964</URL>
</Reference>
</DocumentReferences>
<ProductTree xmlns="http://www.icasi.org/CVRF/schema/prod/1.1">
<Branch Type="Product Name" Name="openEuler">
<FullProductName ProductID="openEuler-22.03-LTS-SP3" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">openEuler-22.03-LTS-SP3</FullProductName>
</Branch>
<Branch Type="Package Arch" Name="aarch64">
<FullProductName ProductID="perf-debuginfo-5.10.0-207.0.0.116" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">perf-debuginfo-5.10.0-207.0.0.116.oe2203sp3.aarch64.rpm</FullProductName>
<FullProductName ProductID="kernel-debuginfo-5.10.0-207.0.0.116" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">kernel-debuginfo-5.10.0-207.0.0.116.oe2203sp3.aarch64.rpm</FullProductName>
<FullProductName ProductID="python3-perf-debuginfo-5.10.0-207.0.0.116" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">python3-perf-debuginfo-5.10.0-207.0.0.116.oe2203sp3.aarch64.rpm</FullProductName>
<FullProductName ProductID="kernel-tools-debuginfo-5.10.0-207.0.0.116" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">kernel-tools-debuginfo-5.10.0-207.0.0.116.oe2203sp3.aarch64.rpm</FullProductName>
<FullProductName ProductID="kernel-tools-5.10.0-207.0.0.116" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">kernel-tools-5.10.0-207.0.0.116.oe2203sp3.aarch64.rpm</FullProductName>
<FullProductName ProductID="kernel-5.10.0-207.0.0.116" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">kernel-5.10.0-207.0.0.116.oe2203sp3.aarch64.rpm</FullProductName>
<FullProductName ProductID="kernel-headers-5.10.0-207.0.0.116" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">kernel-headers-5.10.0-207.0.0.116.oe2203sp3.aarch64.rpm</FullProductName>
<FullProductName ProductID="kernel-devel-5.10.0-207.0.0.116" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">kernel-devel-5.10.0-207.0.0.116.oe2203sp3.aarch64.rpm</FullProductName>
<FullProductName ProductID="python3-perf-5.10.0-207.0.0.116" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">python3-perf-5.10.0-207.0.0.116.oe2203sp3.aarch64.rpm</FullProductName>
<FullProductName ProductID="perf-5.10.0-207.0.0.116" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">perf-5.10.0-207.0.0.116.oe2203sp3.aarch64.rpm</FullProductName>
<FullProductName ProductID="kernel-tools-devel-5.10.0-207.0.0.116" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">kernel-tools-devel-5.10.0-207.0.0.116.oe2203sp3.aarch64.rpm</FullProductName>
<FullProductName ProductID="kernel-debugsource-5.10.0-207.0.0.116" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">kernel-debugsource-5.10.0-207.0.0.116.oe2203sp3.aarch64.rpm</FullProductName>
<FullProductName ProductID="kernel-source-5.10.0-207.0.0.116" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">kernel-source-5.10.0-207.0.0.116.oe2203sp3.aarch64.rpm</FullProductName>
</Branch>
<Branch Type="Package Arch" Name="src">
<FullProductName ProductID="kernel-5.10.0-207.0.0.116" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">kernel-5.10.0-207.0.0.116.oe2203sp3.src.rpm</FullProductName>
</Branch>
<Branch Type="Package Arch" Name="x86_64">
<FullProductName ProductID="kernel-debuginfo-5.10.0-207.0.0.116" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">kernel-debuginfo-5.10.0-207.0.0.116.oe2203sp3.x86_64.rpm</FullProductName>
<FullProductName ProductID="kernel-tools-5.10.0-207.0.0.116" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">kernel-tools-5.10.0-207.0.0.116.oe2203sp3.x86_64.rpm</FullProductName>
<FullProductName ProductID="python3-perf-5.10.0-207.0.0.116" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">python3-perf-5.10.0-207.0.0.116.oe2203sp3.x86_64.rpm</FullProductName>
<FullProductName ProductID="kernel-source-5.10.0-207.0.0.116" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">kernel-source-5.10.0-207.0.0.116.oe2203sp3.x86_64.rpm</FullProductName>
<FullProductName ProductID="kernel-headers-5.10.0-207.0.0.116" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">kernel-headers-5.10.0-207.0.0.116.oe2203sp3.x86_64.rpm</FullProductName>
<FullProductName ProductID="perf-5.10.0-207.0.0.116" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">perf-5.10.0-207.0.0.116.oe2203sp3.x86_64.rpm</FullProductName>
<FullProductName ProductID="kernel-devel-5.10.0-207.0.0.116" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">kernel-devel-5.10.0-207.0.0.116.oe2203sp3.x86_64.rpm</FullProductName>
<FullProductName ProductID="kernel-tools-devel-5.10.0-207.0.0.116" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">kernel-tools-devel-5.10.0-207.0.0.116.oe2203sp3.x86_64.rpm</FullProductName>
<FullProductName ProductID="kernel-debugsource-5.10.0-207.0.0.116" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">kernel-debugsource-5.10.0-207.0.0.116.oe2203sp3.x86_64.rpm</FullProductName>
<FullProductName ProductID="kernel-tools-debuginfo-5.10.0-207.0.0.116" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">kernel-tools-debuginfo-5.10.0-207.0.0.116.oe2203sp3.x86_64.rpm</FullProductName>
<FullProductName ProductID="kernel-5.10.0-207.0.0.116" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">kernel-5.10.0-207.0.0.116.oe2203sp3.x86_64.rpm</FullProductName>
<FullProductName ProductID="python3-perf-debuginfo-5.10.0-207.0.0.116" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">python3-perf-debuginfo-5.10.0-207.0.0.116.oe2203sp3.x86_64.rpm</FullProductName>
<FullProductName ProductID="perf-debuginfo-5.10.0-207.0.0.116" CPE="cpe:/a:openEuler:openEuler:22.03-LTS-SP3">perf-debuginfo-5.10.0-207.0.0.116.oe2203sp3.x86_64.rpm</FullProductName>
</Branch>
</ProductTree>
<Vulnerability Ordinal="1" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Fix use-after-free of encap entry in neigh update handler
Function mlx5e_rep_neigh_update() wasn&apos;t updated to accommodate rtnl lock
removal from TC filter update path and properly handle concurrent encap
entry insertion/deletion which can lead to following use-after-free:
[23827.464923] ==================================================================
[23827.469446] BUG: KASAN: use-after-free in mlx5e_encap_take+0x72/0x140 [mlx5_core]
[23827.470971] Read of size 4 at addr ffff8881d132228c by task kworker/u20:6/21635
[23827.472251]
[23827.472615] CPU: 9 PID: 21635 Comm: kworker/u20:6 Not tainted 5.13.0-rc3+ #5
[23827.473788] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
[23827.475639] Workqueue: mlx5e mlx5e_rep_neigh_update [mlx5_core]
[23827.476731] Call Trace:
[23827.477260] dump_stack+0xbb/0x107
[23827.477906] print_address_description.constprop.0+0x18/0x140
[23827.478896] ? mlx5e_encap_take+0x72/0x140 [mlx5_core]
[23827.479879] ? mlx5e_encap_take+0x72/0x140 [mlx5_core]
[23827.480905] kasan_report.cold+0x7c/0xd8
[23827.481701] ? mlx5e_encap_take+0x72/0x140 [mlx5_core]
[23827.482744] kasan_check_range+0x145/0x1a0
[23827.493112] mlx5e_encap_take+0x72/0x140 [mlx5_core]
[23827.494054] ? mlx5e_tc_tun_encap_info_equal_generic+0x140/0x140 [mlx5_core]
[23827.495296] mlx5e_rep_neigh_update+0x41e/0x5e0 [mlx5_core]
[23827.496338] ? mlx5e_rep_neigh_entry_release+0xb80/0xb80 [mlx5_core]
[23827.497486] ? read_word_at_a_time+0xe/0x20
[23827.498250] ? strscpy+0xa0/0x2a0
[23827.498889] process_one_work+0x8ac/0x14e0
[23827.499638] ? lockdep_hardirqs_on_prepare+0x400/0x400
[23827.500537] ? pwq_dec_nr_in_flight+0x2c0/0x2c0
[23827.501359] ? rwlock_bug.part.0+0x90/0x90
[23827.502116] worker_thread+0x53b/0x1220
[23827.502831] ? process_one_work+0x14e0/0x14e0
[23827.503627] kthread+0x328/0x3f0
[23827.504254] ? _raw_spin_unlock_irq+0x24/0x40
[23827.505065] ? __kthread_bind_mask+0x90/0x90
[23827.505912] ret_from_fork+0x1f/0x30
[23827.506621]
[23827.506987] Allocated by task 28248:
[23827.507694] kasan_save_stack+0x1b/0x40
[23827.508476] __kasan_kmalloc+0x7c/0x90
[23827.509197] mlx5e_attach_encap+0xde1/0x1d40 [mlx5_core]
[23827.510194] mlx5e_tc_add_fdb_flow+0x397/0xc40 [mlx5_core]
[23827.511218] __mlx5e_add_fdb_flow+0x519/0xb30 [mlx5_core]
[23827.512234] mlx5e_configure_flower+0x191c/0x4870 [mlx5_core]
[23827.513298] tc_setup_cb_add+0x1d5/0x420
[23827.514023] fl_hw_replace_filter+0x382/0x6a0 [cls_flower]
[23827.514975] fl_change+0x2ceb/0x4a51 [cls_flower]
[23827.515821] tc_new_tfilter+0x89a/0x2070
[23827.516548] rtnetlink_rcv_msg+0x644/0x8c0
[23827.517300] netlink_rcv_skb+0x11d/0x340
[23827.518021] netlink_unicast+0x42b/0x700
[23827.518742] netlink_sendmsg+0x743/0xc20
[23827.519467] sock_sendmsg+0xb2/0xe0
[23827.520131] ____sys_sendmsg+0x590/0x770
[23827.520851] ___sys_sendmsg+0xd8/0x160
[23827.521552] __sys_sendmsg+0xb7/0x140
[23827.522238] do_syscall_64+0x3a/0x70
[23827.522907] entry_SYSCALL_64_after_hwframe+0x44/0xae
[23827.523797]
[23827.524163] Freed by task 25948:
[23827.524780] kasan_save_stack+0x1b/0x40
[23827.525488] kasan_set_track+0x1c/0x30
[23827.526187] kasan_set_free_info+0x20/0x30
[23827.526968] __kasan_slab_free+0xed/0x130
[23827.527709] slab_free_freelist_hook+0xcf/0x1d0
[23827.528528] kmem_cache_free_bulk+0x33a/0x6e0
[23827.529317] kfree_rcu_work+0x55f/0xb70
[23827.530024] process_one_work+0x8ac/0x14e0
[23827.530770] worker_thread+0x53b/0x1220
[23827.531480] kthread+0x328/0x3f0
[23827.532114] ret_from_fork+0x1f/0x30
[23827.532785]
[23827.533147] Last potentially related work creation:
[23827.534007] kasan_save_stack+0x1b/0x40
[23827.534710] kasan_record_aux_stack+0xab/0xc0
[23827.535492] kvfree_call_rcu+0x31/0x7b0
[23827.536206] mlx5e_tc_del
---truncated---</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2021-47247</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="2" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="2" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
octeontx2-af: Fix possible null pointer dereference.
This patch fixes possible null pointer dereference in files
&quot;rvu_debugfs.c&quot; and &quot;rvu_nix.c&quot;</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2021-47484</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="3" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="3" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
net: stmmac: Disable Tx queues when reconfiguring the interface
The Tx queues were not disabled in situations where the driver needed to
stop the interface to apply a new configuration. This could result in a
kernel panic when doing any of the 3 following actions:
* reconfiguring the number of queues (ethtool -L)
* reconfiguring the size of the ring buffers (ethtool -G)
* installing/removing an XDP program (ip l set dev ethX xdp)
Prevent the panic by making sure netif_tx_disable is called when stopping
an interface.
Without this patch, the following kernel panic can be observed when doing
any of the actions above:
Unable to handle kernel paging request at virtual address ffff80001238d040
[....]
Call trace:
dwmac4_set_addr+0x8/0x10
dev_hard_start_xmit+0xe4/0x1ac
sch_direct_xmit+0xe8/0x39c
__dev_queue_xmit+0x3ec/0xaf0
dev_queue_xmit+0x14/0x20
[...]
[ end trace 0000000000000002 ]---</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2021-47558</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="4" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="4" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
ice: Fix crash by keep old cfg when update TCs more than queues
There are problems if allocated queues less than Traffic Classes.
Commit a632b2a4c920 (&quot;ice: ethtool: Prohibit improper channel config
for DCB&quot;) already disallow setting less queues than TCs.
Another case is if we first set less queues, and later update more TCs
config due to LLDP, ice_vsi_cfg_tc() will failed but left dirty
num_txq/rxq and tc_cfg in vsi, that will cause invalid pointer access.
[ 95.968089] ice 0000:3b:00.1: More TCs defined than queues/rings allocated.
[ 95.968092] ice 0000:3b:00.1: Trying to use more Rx queues (8), than were allocated (1)!
[ 95.968093] ice 0000:3b:00.1: Failed to config TC for VSI index: 0
[ 95.969621] general protection fault: 0000 [#1] SMP NOPTI
[ 95.969705] CPU: 1 PID: 58405 Comm: lldpad Kdump: loaded Tainted: G U W O --------- -t - 4.18.0 #1
[ 95.969867] Hardware name: O.E.M/BC11SPSCB10, BIOS 8.23 12/30/2021
[ 95.969992] RIP: 0010:devm_kmalloc+0xa/0x60
[ 95.970052] Code: 5c ff ff ff 31 c0 5b 5d 41 5c c3 b8 f4 ff ff ff eb f4 0f 1f 40 00 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 48 89 f8 89 d1 &lt;8b&gt; 97 60 02 00 00 48 8d 7e 18 48 39 f7 72 3f 55 89 ce 53 48 8b 4c
[ 95.970344] RSP: 0018:ffffc9003f553888 EFLAGS: 00010206
[ 95.970425] RAX: dead000000000200 RBX: ffffea003c425b00 RCX: 00000000006080c0
[ 95.970536] RDX: 00000000006080c0 RSI: 0000000000000200 RDI: dead000000000200
[ 95.970648] RBP: dead000000000200 R08: 00000000000463c0 R09: ffff888ffa900000
[ 95.970760] R10: 0000000000000000 R11: 0000000000000002 R12: ffff888ff6b40100
[ 95.970870] R13: ffff888ff6a55018 R14: 0000000000000000 R15: ffff888ff6a55460
[ 95.970981] FS: 00007f51b7d24700(0000) GS:ffff88903ee80000(0000) knlGS:0000000000000000
[ 95.971108] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 95.971197] CR2: 00007fac5410d710 CR3: 0000000f2c1de002 CR4: 00000000007606e0
[ 95.971309] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 95.971419] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 95.971530] PKRU: 55555554
[ 95.971573] Call Trace:
[ 95.971622] ice_setup_rx_ring+0x39/0x110 [ice]
[ 95.971695] ice_vsi_setup_rx_rings+0x54/0x90 [ice]
[ 95.971774] ice_vsi_open+0x25/0x120 [ice]
[ 95.971843] ice_open_internal+0xb8/0x1f0 [ice]
[ 95.971919] ice_ena_vsi+0x4f/0xd0 [ice]
[ 95.971987] ice_dcb_ena_dis_vsi.constprop.5+0x29/0x90 [ice]
[ 95.972082] ice_pf_dcb_cfg+0x29a/0x380 [ice]
[ 95.972154] ice_dcbnl_setets+0x174/0x1b0 [ice]
[ 95.972220] dcbnl_ieee_set+0x89/0x230
[ 95.972279] ? dcbnl_ieee_del+0x150/0x150
[ 95.972341] dcb_doit+0x124/0x1b0
[ 95.972392] rtnetlink_rcv_msg+0x243/0x2f0
[ 95.972457] ? dcb_doit+0x14d/0x1b0
[ 95.972510] ? __kmalloc_node_track_caller+0x1d3/0x280
[ 95.972591] ? rtnl_calcit.isra.31+0x100/0x100
[ 95.972661] netlink_rcv_skb+0xcf/0xf0
[ 95.972720] netlink_unicast+0x16d/0x220
[ 95.972781] netlink_sendmsg+0x2ba/0x3a0
[ 95.975891] sock_sendmsg+0x4c/0x50
[ 95.979032] ___sys_sendmsg+0x2e4/0x300
[ 95.982147] ? kmem_cache_alloc+0x13e/0x190
[ 95.985242] ? __wake_up_common_lock+0x79/0x90
[ 95.988338] ? __check_object_size+0xac/0x1b0
[ 95.991440] ? _copy_to_user+0x22/0x30
[ 95.994539] ? move_addr_to_user+0xbb/0xd0
[ 95.997619] ? __sys_sendmsg+0x53/0x80
[ 96.000664] __sys_sendmsg+0x53/0x80
[ 96.003747] do_syscall_64+0x5b/0x1d0
[ 96.006862] entry_SYSCALL_64_after_hwframe+0x65/0xca
Only update num_txq/rxq when passed check, and restore tc_cfg if setup
queue map failed.</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2022-48652</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="5" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="5" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
pipe: wakeup wr_wait after setting max_usage
Commit c73be61cede5 (&quot;pipe: Add general notification queue support&quot;) a
regression was introduced that would lock up resized pipes under certain
conditions. See the reproducer in [1].
The commit resizing the pipe ring size was moved to a different
function, doing that moved the wakeup for pipe-&gt;wr_wait before actually
raising pipe-&gt;max_usage. If a pipe was full before the resize occured it
would result in the wakeup never actually triggering pipe_write.
Set @max_usage and @nr_accounted before waking writers if this isn&apos;t a
watch queue.
[Christian Brauner &lt;brauner@kernel.org&gt;: rewrite to account for watch queues]</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2023-52672</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Low</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>0.0</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="6" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="6" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
ALSA: scarlett2: Add missing error checks to *_ctl_get()
The *_ctl_get() functions which call scarlett2_update_*() were not
checking the return value. Fix to check the return value and pass to
the caller.</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2023-52680</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="7" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="7" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
powerpc/powernv: Add a null pointer check in opal_event_init()
kasprintf() returns a pointer to dynamically allocated memory
which can be NULL upon failure.</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2023-52686</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="8" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="8" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
ACPI: video: check for error while searching for backlight device parent
If acpi_get_parent() called in acpi_video_dev_register_backlight()
fails, for example, because acpi_ut_acquire_mutex() fails inside
acpi_get_parent), this can lead to incorrect (uninitialized)
acpi_parent handle being passed to acpi_get_pci_dev() for detecting
the parent pci device.
Check acpi_get_parent() result and set parent device only in case of success.
Found by Linux Verification Center (linuxtesting.org) with SVACE.</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2023-52693</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="9" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="9" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
ceph: blocklist the kclient when receiving corrupted snap trace
When received corrupted snap trace we don&apos;t know what exactly has
happened in MDS side. And we shouldn&apos;t continue IOs and metadatas
access to MDS, which may corrupt or get incorrect contents.
This patch will just block all the further IO/MDS requests
immediately and then evict the kclient itself.
The reason why we still need to evict the kclient just after
blocking all the further IOs is that the MDS could revoke the caps
faster.</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2023-52732</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="10" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="10" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
virtio-blk: fix implicit overflow on virtio_max_dma_size
The following codes have an implicit conversion from size_t to u32:
(u32)max_size = (size_t)virtio_max_dma_size(vdev);
This may lead overflow, Ex (size_t)4G -&gt; (u32)0. Once
virtio_max_dma_size() has a larger size than U32_MAX, use U32_MAX
instead.</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2023-52762</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="11" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="11" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
net/smc: avoid data corruption caused by decline
We found a data corruption issue during testing of SMC-R on Redis
applications.
The benchmark has a low probability of reporting a strange error as
shown below.
&quot;Error: Protocol error, got &quot;\xe2&quot; as reply type byte&quot;
Finally, we found that the retrieved error data was as follows:
0xE2 0xD4 0xC3 0xD9 0x04 0x00 0x2C 0x20 0xA6 0x56 0x00 0x16 0x3E 0x0C
0xCB 0x04 0x02 0x01 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0xE2
It is quite obvious that this is a SMC DECLINE message, which means that
the applications received SMC protocol message.
We found that this was caused by the following situations:
client server
¦ clc proposal
-------------&gt;
¦ clc accept
&lt;-------------
¦ clc confirm
-------------&gt;
wait llc confirm
send llc confirm
¦failed llc confirm
¦ x------
(after 2s)timeout
wait llc confirm rsp
wait decline
(after 1s) timeout
(after 2s) timeout
¦ decline
--------------&gt;
¦ decline
&lt;--------------
As a result, a decline message was sent in the implementation, and this
message was read from TCP by the already-fallback connection.
This patch double the client timeout as 2x of the server value,
With this simple change, the Decline messages should never cross or
collide (during Confirm link timeout).
This issue requires an immediate solution, since the protocol updates
involve a more long-term solution.</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2023-52775</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.9</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="12" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="12" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
SUNRPC: Fix RPC client cleaned up the freed pipefs dentries
RPC client pipefs dentries cleanup is in separated rpc_remove_pipedir()
workqueue,which takes care about pipefs superblock locking.
In some special scenarios, when kernel frees the pipefs sb of the
current client and immediately alloctes a new pipefs sb,
rpc_remove_pipedir function would misjudge the existence of pipefs
sb which is not the one it used to hold. As a result,
the rpc_remove_pipedir would clean the released freed pipefs dentries.
To fix this issue, rpc_remove_pipedir should check whether the
current pipefs sb is consistent with the original pipefs sb.
This error can be catched by KASAN:
=========================================================
[ 250.497700] BUG: KASAN: slab-use-after-free in dget_parent+0x195/0x200
[ 250.498315] Read of size 4 at addr ffff88800a2ab804 by task kworker/0:18/106503
[ 250.500549] Workqueue: events rpc_free_client_work
[ 250.501001] Call Trace:
[ 250.502880] kasan_report+0xb6/0xf0
[ 250.503209] ? dget_parent+0x195/0x200
[ 250.503561] dget_parent+0x195/0x200
[ 250.503897] ? __pfx_rpc_clntdir_depopulate+0x10/0x10
[ 250.504384] rpc_rmdir_depopulate+0x1b/0x90
[ 250.504781] rpc_remove_client_dir+0xf5/0x150
[ 250.505195] rpc_free_client_work+0xe4/0x230
[ 250.505598] process_one_work+0x8ee/0x13b0
...
[ 22.039056] Allocated by task 244:
[ 22.039390] kasan_save_stack+0x22/0x50
[ 22.039758] kasan_set_track+0x25/0x30
[ 22.040109] __kasan_slab_alloc+0x59/0x70
[ 22.040487] kmem_cache_alloc_lru+0xf0/0x240
[ 22.040889] __d_alloc+0x31/0x8e0
[ 22.041207] d_alloc+0x44/0x1f0
[ 22.041514] __rpc_lookup_create_exclusive+0x11c/0x140
[ 22.041987] rpc_mkdir_populate.constprop.0+0x5f/0x110
[ 22.042459] rpc_create_client_dir+0x34/0x150
[ 22.042874] rpc_setup_pipedir_sb+0x102/0x1c0
[ 22.043284] rpc_client_register+0x136/0x4e0
[ 22.043689] rpc_new_client+0x911/0x1020
[ 22.044057] rpc_create_xprt+0xcb/0x370
[ 22.044417] rpc_create+0x36b/0x6c0
...
[ 22.049524] Freed by task 0:
[ 22.049803] kasan_save_stack+0x22/0x50
[ 22.050165] kasan_set_track+0x25/0x30
[ 22.050520] kasan_save_free_info+0x2b/0x50
[ 22.050921] __kasan_slab_free+0x10e/0x1a0
[ 22.051306] kmem_cache_free+0xa5/0x390
[ 22.051667] rcu_core+0x62c/0x1930
[ 22.051995] __do_softirq+0x165/0x52a
[ 22.052347]
[ 22.052503] Last potentially related work creation:
[ 22.052952] kasan_save_stack+0x22/0x50
[ 22.053313] __kasan_record_aux_stack+0x8e/0xa0
[ 22.053739] __call_rcu_common.constprop.0+0x6b/0x8b0
[ 22.054209] dentry_free+0xb2/0x140
[ 22.054540] __dentry_kill+0x3be/0x540
[ 22.054900] shrink_dentry_list+0x199/0x510
[ 22.055293] shrink_dcache_parent+0x190/0x240
[ 22.055703] do_one_tree+0x11/0x40
[ 22.056028] shrink_dcache_for_umount+0x61/0x140
[ 22.056461] generic_shutdown_super+0x70/0x590
[ 22.056879] kill_anon_super+0x3a/0x60
[ 22.057234] rpc_kill_sb+0x121/0x200</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2023-52803</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="13" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="13" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
fs/jfs: Add check for negative db_l2nbperpage
l2nbperpage is log2(number of blks per page), and the minimum legal
value should be 0, not negative.
In the case of l2nbperpage being negative, an error will occur
when subsequently used as shift exponent.
Syzbot reported this bug:
UBSAN: shift-out-of-bounds in fs/jfs/jfs_dmap.c:799:12
shift exponent -16777216 is negative</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2023-52810</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="14" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="14" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
tty: n_gsm: require CAP_NET_ADMIN to attach N_GSM0710 ldisc
Any unprivileged user can attach N_GSM0710 ldisc, but it requires
CAP_NET_ADMIN to create a GSM network anyway.
Require initial namespace CAP_NET_ADMIN to do that.</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2023-52880</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="15" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="15" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
tcp: do not accept ACK of bytes we never sent
This patch is based on a detailed report and ideas from Yepeng Pan
and Christian Rossow.
ACK seq validation is currently following RFC 5961 5.2 guidelines:
The ACK value is considered acceptable only if
it is in the range of ((SND.UNA - MAX.SND.WND) &lt;= SEG.ACK &lt;=
SND.NXT). All incoming segments whose ACK value doesn&apos;t satisfy the
above condition MUST be discarded and an ACK sent back. It needs to
be noted that RFC 793 on page 72 (fifth check) says: &quot;If the ACK is a
duplicate (SEG.ACK &lt; SND.UNA), it can be ignored. If the ACK
acknowledges something not yet sent (SEG.ACK &gt; SND.NXT) then send an
ACK, drop the segment, and return&quot;. The &quot;ignored&quot; above implies that
the processing of the incoming data segment continues, which means
the ACK value is treated as acceptable. This mitigation makes the
ACK check more stringent since any ACK &lt; SND.UNA wouldn&apos;t be
accepted, instead only ACKs that are in the range ((SND.UNA -
MAX.SND.WND) &lt;= SEG.ACK &lt;= SND.NXT) get through.
This can be refined for new (and possibly spoofed) flows,
by not accepting ACK for bytes that were never sent.
This greatly improves TCP security at a little cost.
I added a Fixes: tag to make sure this patch will reach stable trees,
even if the &apos;blamed&apos; patch was adhering to the RFC.
tp-&gt;bytes_acked was added in linux-4.2
Following packetdrill test (courtesy of Yepeng Pan) shows
the issue at hand:
0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3
+0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0
+0 bind(3, ..., ...) = 0
+0 listen(3, 1024) = 0
// ---------------- Handshake ------------------- //
// when window scale is set to 14 the window size can be extended to
// 65535 * (2^14) = 1073725440. Linux would accept an ACK packet
// with ack number in (Server_ISN+1-1073725440. Server_ISN+1)
// ,though this ack number acknowledges some data never
// sent by the server.
+0 &lt; S 0:0(0) win 65535 &lt;mss 1400,nop,wscale 14&gt;
+0 &gt; S. 0:0(0) ack 1 &lt;...&gt;
+0 &lt; . 1:1(0) ack 1 win 65535
+0 accept(3, ..., ...) = 4
// For the established connection, we send an ACK packet,
// the ack packet uses ack number 1 - 1073725300 + 2^32,
// where 2^32 is used to wrap around.
// Note: we used 1073725300 instead of 1073725440 to avoid possible
// edge cases.
// 1 - 1073725300 + 2^32 = 3221241997
// Oops, old kernels happily accept this packet.
+0 &lt; . 1:1001(1000) ack 3221241997 win 65535
// After the kernel fix the following will be replaced by a challenge ACK,
// and prior malicious frame would be dropped.
+0 &gt; . 1:1(0) ack 1001</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2023-52881</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.9</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="16" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="16" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: set dormant flag on hook register failure
We need to set the dormant flag again if we fail to register
the hooks.
During memory pressure hook registration can fail and we end up
with a table marked as active but no registered hooks.
On table/base chain deletion, nf_tables will attempt to unregister
the hook again which yields a warn splat from the nftables core.</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2024-26835</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Low</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>3.3</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:L/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="17" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="17" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_core: Fix possible buffer overflow
struct hci_dev_info has a fixed size name[8] field so in the event that
hdev-&gt;name is bigger than that strcpy would attempt to write past its
size, so this fixes this problem by switching to use strscpy.</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2024-26889</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="18" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="18" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
xen-netfront: Add missing skb_mark_for_recycle
Notice that skb_mark_for_recycle() is introduced later than fixes tag in
commit 6a5bcd84e886 (&quot;page_pool: Allow drivers to hint on SKB recycling&quot;).
It is believed that fixes tag were missing a call to page_pool_release_page()
between v5.9 to v5.14, after which is should have used skb_mark_for_recycle().
Since v6.6 the call page_pool_release_page() were removed (in
commit 535b9c61bdef (&quot;net: page_pool: hide page_pool_release_page()&quot;)
and remaining callers converted (in commit 6bfef2ec0172 (&quot;Merge branch
&apos;net-page_pool-remove-page_pool_release_page&apos;&quot;)).
This leak became visible in v6.8 via commit dba1b8a7ab68 (&quot;mm/page_pool: catch
page_pool memory leaks&quot;).</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2024-27393</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>4.0</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="19" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="19" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
phonet/pep: fix racy skb_queue_empty() use
The receive queues are protected by their respective spin-lock, not
the socket lock. This could lead to skb_peek() unexpectedly
returning NULL or a pointer to an already dequeued socket buffer.</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2024-27402</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="20" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="20" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
dmaengine: dw-edma: eDMA: Add sync read before starting the DMA transfer in remote setup
The Linked list element and pointer are not stored in the same memory as
the eDMA controller register. If the doorbell register is toggled before
the full write of the linked list a race condition error will occur.
In remote setup we can only use a readl to the memory to assure the full
write has occurred.</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2024-27408</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Low</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>0.0</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="21" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="21" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
usb: typec: altmodes/displayport: create sysfs nodes as driver&apos;s default device attribute group
The DisplayPort driver&apos;s sysfs nodes may be present to the userspace before
typec_altmode_set_drvdata() completes in dp_altmode_probe. This means that
a sysfs read can trigger a NULL pointer error by deferencing dp-&gt;hpd in
hpd_show or dp-&gt;lock in pin_assignment_show, as dev_get_drvdata() returns
NULL in those cases.
Remove manual sysfs node creation in favor of adding attribute group as
default for devices bound to the driver. The ATTRIBUTE_GROUPS() macro is
not used here otherwise the path to the sysfs nodes is no longer compliant
with the ABI.</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2024-35790</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="22" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="22" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
PCI/PM: Drain runtime-idle callbacks before driver removal
A race condition between the .runtime_idle() callback and the .remove()
callback in the rtsx_pcr PCI driver leads to a kernel crash due to an
unhandled page fault [1].
The problem is that rtsx_pci_runtime_idle() is not expected to be running
after pm_runtime_get_sync() has been called, but the latter doesn&apos;t really
guarantee that. It only guarantees that the suspend and resume callbacks
will not be running when it returns.
However, if a .runtime_idle() callback is already running when
pm_runtime_get_sync() is called, the latter will notice that the runtime PM
status of the device is RPM_ACTIVE and it will return right away without
waiting for the former to complete. In fact, it cannot wait for
.runtime_idle() to complete because it may be called from that callback (it
arguably does not make much sense to do that, but it is not strictly
prohibited).
Thus in general, whoever is providing a .runtime_idle() callback needs
to protect it from running in parallel with whatever code runs after
pm_runtime_get_sync(). [Note that .runtime_idle() will not start after
pm_runtime_get_sync() has returned, but it may continue running then if it
has started earlier.]
One way to address that race condition is to call pm_runtime_barrier()
after pm_runtime_get_sync() (not before it, because a nonzero value of the
runtime PM usage counter is necessary to prevent runtime PM callbacks from
being invoked) to wait for the .runtime_idle() callback to complete should
it be running at that point. A suitable place for doing that is in
pci_device_remove() which calls pm_runtime_get_sync() before removing the
driver, so it may as well call pm_runtime_barrier() subsequently, which
will prevent the race in question from occurring, not just in the rtsx_pcr
driver, but in any PCI drivers providing .runtime_idle() callbacks.</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2024-35809</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>4.7</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="23" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="23" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: Fix use-after-free bug in brcmf_cfg80211_detach
This is the candidate patch of CVE-2023-47233 :
https://nvd.nist.gov/vuln/detail/CVE-2023-47233
In brcm80211 driver,it starts with the following invoking chain
to start init a timeout worker:
-&gt;brcmf_usb_probe
-&gt;brcmf_usb_probe_cb
-&gt;brcmf_attach
-&gt;brcmf_bus_started
-&gt;brcmf_cfg80211_attach
-&gt;wl_init_priv
-&gt;brcmf_init_escan
-&gt;INIT_WORK(&amp;cfg-&gt;escan_timeout_work,
brcmf_cfg80211_escan_timeout_worker);
If we disconnect the USB by hotplug, it will call
brcmf_usb_disconnect to make cleanup. The invoking chain is :
brcmf_usb_disconnect
-&gt;brcmf_usb_disconnect_cb
-&gt;brcmf_detach
-&gt;brcmf_cfg80211_detach
-&gt;kfree(cfg);
While the timeout woker may still be running. This will cause
a use-after-free bug on cfg in brcmf_cfg80211_escan_timeout_worker.
Fix it by deleting the timer and canceling the worker in
brcmf_cfg80211_detach.
[arend.vanspriel@broadcom.com: keep timer delete as is and cancel work just before free]</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2024-35811</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Low</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>0.0</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="24" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="24" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
mlxsw: spectrum_acl_tcam: Fix memory leak during rehash
The rehash delayed work migrates filters from one region to another.
This is done by iterating over all chunks (all the filters with the same
priority) in the region and in each chunk iterating over all the
filters.
If the migration fails, the code tries to migrate the filters back to
the old region. However, the rollback itself can also fail in which case
another migration will be erroneously performed. Besides the fact that
this ping pong is not a very good idea, it also creates a problem.
Each virtual chunk references two chunks: The currently used one
(&apos;vchunk-&gt;chunk&apos;) and a backup (&apos;vchunk-&gt;chunk2&apos;). During migration the
first holds the chunk we want to migrate filters to and the second holds
the chunk we are migrating filters from.
The code currently assumes - but does not verify - that the backup chunk
does not exist (NULL) if the currently used chunk does not reference the
target region. This assumption breaks when we are trying to rollback a
rollback, resulting in the backup chunk being overwritten and leaked
[1].
Fix by not rolling back a failed rollback and add a warning to avoid
future cases.
[1]
WARNING: CPU: 5 PID: 1063 at lib/parman.c:291 parman_destroy+0x17/0x20
Modules linked in:
CPU: 5 PID: 1063 Comm: kworker/5:11 Tainted: G W 6.9.0-rc2-custom-00784-gc6a05c468a0b #14
Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019
Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work
RIP: 0010:parman_destroy+0x17/0x20
[...]
Call Trace:
&lt;TASK&gt;
mlxsw_sp_acl_atcam_region_fini+0x19/0x60
mlxsw_sp_acl_tcam_region_destroy+0x49/0xf0
mlxsw_sp_acl_tcam_vregion_rehash_work+0x1f1/0x470
process_one_work+0x151/0x370
worker_thread+0x2cb/0x3e0
kthread+0xd0/0x100
ret_from_fork+0x34/0x50
ret_from_fork_asm+0x1a/0x30
&lt;/TASK&gt;</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2024-35853</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="25" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="25" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
mlxsw: spectrum_acl_tcam: Fix possible use-after-free during rehash
The rehash delayed work migrates filters from one region to another
according to the number of available credits.
The migrated from region is destroyed at the end of the work if the
number of credits is non-negative as the assumption is that this is
indicative of migration being complete. This assumption is incorrect as
a non-negative number of credits can also be the result of a failed
migration.
The destruction of a region that still has filters referencing it can
result in a use-after-free [1].
Fix by not destroying the region if migration failed.
[1]
BUG: KASAN: slab-use-after-free in mlxsw_sp_acl_ctcam_region_entry_remove+0x21d/0x230
Read of size 8 at addr ffff8881735319e8 by task kworker/0:31/3858
CPU: 0 PID: 3858 Comm: kworker/0:31 Tainted: G W 6.9.0-rc2-custom-00782-gf2275c2157d8 #5
Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019
Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work
Call Trace:
&lt;TASK&gt;
dump_stack_lvl+0xc6/0x120
print_report+0xce/0x670
kasan_report+0xd7/0x110
mlxsw_sp_acl_ctcam_region_entry_remove+0x21d/0x230
mlxsw_sp_acl_ctcam_entry_del+0x2e/0x70
mlxsw_sp_acl_atcam_entry_del+0x81/0x210
mlxsw_sp_acl_tcam_vchunk_migrate_all+0x3cd/0xb50
mlxsw_sp_acl_tcam_vregion_rehash_work+0x157/0x1300
process_one_work+0x8eb/0x19b0
worker_thread+0x6c9/0xf70
kthread+0x2c9/0x3b0
ret_from_fork+0x4d/0x80
ret_from_fork_asm+0x1a/0x30
&lt;/TASK&gt;
Allocated by task 174:
kasan_save_stack+0x33/0x60
kasan_save_track+0x14/0x30
__kasan_kmalloc+0x8f/0xa0
__kmalloc+0x19c/0x360
mlxsw_sp_acl_tcam_region_create+0xdf/0x9c0
mlxsw_sp_acl_tcam_vregion_rehash_work+0x954/0x1300
process_one_work+0x8eb/0x19b0
worker_thread+0x6c9/0xf70
kthread+0x2c9/0x3b0
ret_from_fork+0x4d/0x80
ret_from_fork_asm+0x1a/0x30
Freed by task 7:
kasan_save_stack+0x33/0x60
kasan_save_track+0x14/0x30
kasan_save_free_info+0x3b/0x60
poison_slab_object+0x102/0x170
__kasan_slab_free+0x14/0x30
kfree+0xc1/0x290
mlxsw_sp_acl_tcam_region_destroy+0x272/0x310
mlxsw_sp_acl_tcam_vregion_rehash_work+0x731/0x1300
process_one_work+0x8eb/0x19b0
worker_thread+0x6c9/0xf70
kthread+0x2c9/0x3b0
ret_from_fork+0x4d/0x80
ret_from_fork_asm+0x1a/0x30</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2024-35854</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="26" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="26" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
riscv: process: Fix kernel gp leakage
childregs represents the registers which are active for the new thread
in user context. For a kernel thread, childregs-&gt;gp is never used since
the kernel gp is not touched by switch_to. For a user mode helper, the
gp value can be observed in user space after execve or possibly by other
means.
[From the email thread]
The /* Kernel thread */ comment is somewhat inaccurate in that it is also used
for user_mode_helper threads, which exec a user process, e.g. /sbin/init or
when /proc/sys/kernel/core_pattern is a pipe. Such threads do not have
PF_KTHREAD set and are valid targets for ptrace etc. even before they exec.
childregs is the *user* context during syscall execution and it is observable
from userspace in at least five ways:
1. kernel_execve does not currently clear integer registers, so the starting
register state for PID 1 and other user processes started by the kernel has
sp = user stack, gp = kernel __global_pointer$, all other integer registers
zeroed by the memset in the patch comment.
This is a bug in its own right, but I&apos;m unwilling to bet that it is the only
way to exploit the issue addressed by this patch.
2. ptrace(PTRACE_GETREGSET): you can PTRACE_ATTACH to a user_mode_helper thread
before it execs, but ptrace requires SIGSTOP to be delivered which can only
happen at user/kernel boundaries.
3. /proc/*/task/*/syscall: this is perfectly happy to read pt_regs for
user_mode_helpers before the exec completes, but gp is not one of the
registers it returns.
4. PERF_SAMPLE_REGS_USER: LOCKDOWN_PERF normally prevents access to kernel
addresses via PERF_SAMPLE_REGS_INTR, but due to this bug kernel addresses
are also exposed via PERF_SAMPLE_REGS_USER which is permitted under
LOCKDOWN_PERF. I have not attempted to write exploit code.
5. Much of the tracing infrastructure allows access to user registers. I have
not attempted to determine which forms of tracing allow access to user
registers without already allowing access to kernel registers.</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2024-35871</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="27" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="27" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
erspan: make sure erspan_base_hdr is present in skb-&gt;head
syzbot reported a problem in ip6erspan_rcv() [1]
Issue is that ip6erspan_rcv() (and erspan_rcv()) no longer make
sure erspan_base_hdr is present in skb linear part (skb-&gt;head)
before getting @ver field from it.
Add the missing pskb_may_pull() calls.
v2: Reload iph pointer in erspan_rcv() after pskb_may_pull()
because skb-&gt;head might have changed.
[1]
BUG: KMSAN: uninit-value in pskb_may_pull_reason include/linux/skbuff.h:2742 [inline]
BUG: KMSAN: uninit-value in pskb_may_pull include/linux/skbuff.h:2756 [inline]
BUG: KMSAN: uninit-value in ip6erspan_rcv net/ipv6/ip6_gre.c:541 [inline]
BUG: KMSAN: uninit-value in gre_rcv+0x11f8/0x1930 net/ipv6/ip6_gre.c:610
pskb_may_pull_reason include/linux/skbuff.h:2742 [inline]
pskb_may_pull include/linux/skbuff.h:2756 [inline]
ip6erspan_rcv net/ipv6/ip6_gre.c:541 [inline]
gre_rcv+0x11f8/0x1930 net/ipv6/ip6_gre.c:610
ip6_protocol_deliver_rcu+0x1d4c/0x2ca0 net/ipv6/ip6_input.c:438
ip6_input_finish net/ipv6/ip6_input.c:483 [inline]
NF_HOOK include/linux/netfilter.h:314 [inline]
ip6_input+0x15d/0x430 net/ipv6/ip6_input.c:492
ip6_mc_input+0xa7e/0xc80 net/ipv6/ip6_input.c:586
dst_input include/net/dst.h:460 [inline]
ip6_rcv_finish+0x955/0x970 net/ipv6/ip6_input.c:79
NF_HOOK include/linux/netfilter.h:314 [inline]
ipv6_rcv+0xde/0x390 net/ipv6/ip6_input.c:310
__netif_receive_skb_one_core net/core/dev.c:5538 [inline]
__netif_receive_skb+0x1da/0xa00 net/core/dev.c:5652
netif_receive_skb_internal net/core/dev.c:5738 [inline]
netif_receive_skb+0x58/0x660 net/core/dev.c:5798
tun_rx_batched+0x3ee/0x980 drivers/net/tun.c:1549
tun_get_user+0x5566/0x69e0 drivers/net/tun.c:2002
tun_chr_write_iter+0x3af/0x5d0 drivers/net/tun.c:2048
call_write_iter include/linux/fs.h:2108 [inline]
new_sync_write fs/read_write.c:497 [inline]
vfs_write+0xb63/0x1520 fs/read_write.c:590
ksys_write+0x20f/0x4c0 fs/read_write.c:643
__do_sys_write fs/read_write.c:655 [inline]
__se_sys_write fs/read_write.c:652 [inline]
__x64_sys_write+0x93/0xe0 fs/read_write.c:652
do_syscall_64+0xd5/0x1f0
entry_SYSCALL_64_after_hwframe+0x6d/0x75
Uninit was created at:
slab_post_alloc_hook mm/slub.c:3804 [inline]
slab_alloc_node mm/slub.c:3845 [inline]
kmem_cache_alloc_node+0x613/0xc50 mm/slub.c:3888
kmalloc_reserve+0x13d/0x4a0 net/core/skbuff.c:577
__alloc_skb+0x35b/0x7a0 net/core/skbuff.c:668
alloc_skb include/linux/skbuff.h:1318 [inline]
alloc_skb_with_frags+0xc8/0xbf0 net/core/skbuff.c:6504
sock_alloc_send_pskb+0xa81/0xbf0 net/core/sock.c:2795
tun_alloc_skb drivers/net/tun.c:1525 [inline]
tun_get_user+0x209a/0x69e0 drivers/net/tun.c:1846
tun_chr_write_iter+0x3af/0x5d0 drivers/net/tun.c:2048
call_write_iter include/linux/fs.h:2108 [inline]
new_sync_write fs/read_write.c:497 [inline]
vfs_write+0xb63/0x1520 fs/read_write.c:590
ksys_write+0x20f/0x4c0 fs/read_write.c:643
__do_sys_write fs/read_write.c:655 [inline]
__se_sys_write fs/read_write.c:652 [inline]
__x64_sys_write+0x93/0xe0 fs/read_write.c:652
do_syscall_64+0xd5/0x1f0
entry_SYSCALL_64_after_hwframe+0x6d/0x75
CPU: 1 PID: 5045 Comm: syz-executor114 Not tainted 6.9.0-rc1-syzkaller-00021-g962490525cff #0</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2024-35888</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="28" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="28" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
bpf, sockmap: Prevent lock inversion deadlock in map delete elem
syzkaller started using corpuses where a BPF tracing program deletes
elements from a sockmap/sockhash map. Because BPF tracing programs can be
invoked from any interrupt context, locks taken during a map_delete_elem
operation must be hardirq-safe. Otherwise a deadlock due to lock inversion
is possible, as reported by lockdep:
CPU0 CPU1
---- ----
lock(&amp;htab-&gt;buckets[i].lock);
local_irq_disable();
lock(&amp;host-&gt;lock);
lock(&amp;htab-&gt;buckets[i].lock);
&lt;Interrupt&gt;
lock(&amp;host-&gt;lock);
Locks in sockmap are hardirq-unsafe by design. We expects elements to be
deleted from sockmap/sockhash only in task (normal) context with interrupts
enabled, or in softirq context.
Detect when map_delete_elem operation is invoked from a context which is
_not_ hardirq-unsafe, that is interrupts are disabled, and bail out with an
error.
Note that map updates are not affected by this issue. BPF verifier does not
allow updating sockmap/sockhash from a BPF tracing program today.</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2024-35895</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="29" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="29" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
netfilter: validate user input for expected length
I got multiple syzbot reports showing old bugs exposed
by BPF after commit 20f2505fb436 (&quot;bpf: Try to avoid kzalloc
in cgroup/{s,g}etsockopt&quot;)
setsockopt() @optlen argument should be taken into account
before copying data.
BUG: KASAN: slab-out-of-bounds in copy_from_sockptr_offset include/linux/sockptr.h:49 [inline]
BUG: KASAN: slab-out-of-bounds in copy_from_sockptr include/linux/sockptr.h:55 [inline]
BUG: KASAN: slab-out-of-bounds in do_replace net/ipv4/netfilter/ip_tables.c:1111 [inline]
BUG: KASAN: slab-out-of-bounds in do_ipt_set_ctl+0x902/0x3dd0 net/ipv4/netfilter/ip_tables.c:1627
Read of size 96 at addr ffff88802cd73da0 by task syz-executor.4/7238
CPU: 1 PID: 7238 Comm: syz-executor.4 Not tainted 6.9.0-rc2-next-20240403-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024
Call Trace:
&lt;TASK&gt;
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:114
print_address_description mm/kasan/report.c:377 [inline]
print_report+0x169/0x550 mm/kasan/report.c:488
kasan_report+0x143/0x180 mm/kasan/report.c:601
kasan_check_range+0x282/0x290 mm/kasan/generic.c:189
__asan_memcpy+0x29/0x70 mm/kasan/shadow.c:105
copy_from_sockptr_offset include/linux/sockptr.h:49 [inline]
copy_from_sockptr include/linux/sockptr.h:55 [inline]
do_replace net/ipv4/netfilter/ip_tables.c:1111 [inline]
do_ipt_set_ctl+0x902/0x3dd0 net/ipv4/netfilter/ip_tables.c:1627
nf_setsockopt+0x295/0x2c0 net/netfilter/nf_sockopt.c:101
do_sock_setsockopt+0x3af/0x720 net/socket.c:2311
__sys_setsockopt+0x1ae/0x250 net/socket.c:2334
__do_sys_setsockopt net/socket.c:2343 [inline]
__se_sys_setsockopt net/socket.c:2340 [inline]
__x64_sys_setsockopt+0xb5/0xd0 net/socket.c:2340
do_syscall_64+0xfb/0x240
entry_SYSCALL_64_after_hwframe+0x72/0x7a
RIP: 0033:0x7fd22067dde9
Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 e1 20 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 &lt;48&gt; 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007fd21f9ff0c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000036
RAX: ffffffffffffffda RBX: 00007fd2207abf80 RCX: 00007fd22067dde9
RDX: 0000000000000040 RSI: 0000000000000000 RDI: 0000000000000003
RBP: 00007fd2206ca47a R08: 0000000000000001 R09: 0000000000000000
R10: 0000000020000880 R11: 0000000000000246 R12: 0000000000000000
R13: 000000000000000b R14: 00007fd2207abf80 R15: 00007ffd2d0170d8
&lt;/TASK&gt;
Allocated by task 7238:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:370 [inline]
__kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:387
kasan_kmalloc include/linux/kasan.h:211 [inline]
__do_kmalloc_node mm/slub.c:4069 [inline]
__kmalloc_noprof+0x200/0x410 mm/slub.c:4082
kmalloc_noprof include/linux/slab.h:664 [inline]
__cgroup_bpf_run_filter_setsockopt+0xd47/0x1050 kernel/bpf/cgroup.c:1869
do_sock_setsockopt+0x6b4/0x720 net/socket.c:2293
__sys_setsockopt+0x1ae/0x250 net/socket.c:2334
__do_sys_setsockopt net/socket.c:2343 [inline]
__se_sys_setsockopt net/socket.c:2340 [inline]
__x64_sys_setsockopt+0xb5/0xd0 net/socket.c:2340
do_syscall_64+0xfb/0x240
entry_SYSCALL_64_after_hwframe+0x72/0x7a
The buggy address belongs to the object at ffff88802cd73da0
which belongs to the cache kmalloc-8 of size 8
The buggy address is located 0 bytes inside of
allocated 1-byte region [ffff88802cd73da0, ffff88802cd73da1)
The buggy address belongs to the physical page:
page: refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff88802cd73020 pfn:0x2cd73
flags: 0xfff80000000000(node=0|zone=1|lastcpupid=0xfff)
page_type: 0xffffefff(slab)
raw: 00fff80000000000 ffff888015041280 dead000000000100 dead000000000122
raw: ffff88802cd73020 000000008080007f 00000001ffffefff 00
---truncated---</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2024-35896</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="30" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="30" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
bpf: Protect against int overflow for stack access size
This patch re-introduces protection against the size of access to stack
memory being negative; the access size can appear negative as a result
of overflowing its signed int representation. This should not actually
happen, as there are other protections along the way, but we should
protect against it anyway. One code path was missing such protections
(fixed in the previous patch in the series), causing out-of-bounds array
accesses in check_stack_range_initialized(). This patch causes the
verification of a program with such a non-sensical access size to fail.
This check used to exist in a more indirect way, but was inadvertendly
removed in a833a17aeac7.</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2024-35905</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="31" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="31" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
usb: typec: ucsi: Limit read size on v1.2
Between UCSI 1.2 and UCSI 2.0, the size of the MESSAGE_IN region was
increased from 16 to 256. In order to avoid overflowing reads for older
systems, add a mechanism to use the read UCSI version to truncate read
sizes on UCSI v1.2.</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2024-35924</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="32" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="32" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: SCO: Fix not validating setsockopt user input
syzbot reported sco_sock_setsockopt() is copying data without
checking user input length.
BUG: KASAN: slab-out-of-bounds in copy_from_sockptr_offset
include/linux/sockptr.h:49 [inline]
BUG: KASAN: slab-out-of-bounds in copy_from_sockptr
include/linux/sockptr.h:55 [inline]
BUG: KASAN: slab-out-of-bounds in sco_sock_setsockopt+0xc0b/0xf90
net/bluetooth/sco.c:893
Read of size 4 at addr ffff88805f7b15a3 by task syz-executor.5/12578</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2024-35967</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="33" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="33" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
geneve: fix header validation in geneve[6]_xmit_skb
syzbot is able to trigger an uninit-value in geneve_xmit() [1]
Problem : While most ip tunnel helpers (like ip_tunnel_get_dsfield())
uses skb_protocol(skb, true), pskb_inet_may_pull() is only using
skb-&gt;protocol.
If anything else than ETH_P_IPV6 or ETH_P_IP is found in skb-&gt;protocol,
pskb_inet_may_pull() does nothing at all.
If a vlan tag was provided by the caller (af_packet in the syzbot case),
the network header might not point to the correct location, and skb
linear part could be smaller than expected.
Add skb_vlan_inet_prepare() to perform a complete mac validation.
Use this in geneve for the moment, I suspect we need to adopt this
more broadly.
v4 - Jakub reported v3 broke l2_tos_ttl_inherit.sh selftest
- Only call __vlan_get_protocol() for vlan types.
v2,v3 - Addressed Sabrina comments on v1 and v2
[1]
BUG: KMSAN: uninit-value in geneve_xmit_skb drivers/net/geneve.c:910 [inline]
BUG: KMSAN: uninit-value in geneve_xmit+0x302d/0x5420 drivers/net/geneve.c:1030
geneve_xmit_skb drivers/net/geneve.c:910 [inline]
geneve_xmit+0x302d/0x5420 drivers/net/geneve.c:1030
__netdev_start_xmit include/linux/netdevice.h:4903 [inline]
netdev_start_xmit include/linux/netdevice.h:4917 [inline]
xmit_one net/core/dev.c:3531 [inline]
dev_hard_start_xmit+0x247/0xa20 net/core/dev.c:3547
__dev_queue_xmit+0x348d/0x52c0 net/core/dev.c:4335
dev_queue_xmit include/linux/netdevice.h:3091 [inline]
packet_xmit+0x9c/0x6c0 net/packet/af_packet.c:276
packet_snd net/packet/af_packet.c:3081 [inline]
packet_sendmsg+0x8bb0/0x9ef0 net/packet/af_packet.c:3113
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0x30f/0x380 net/socket.c:745
__sys_sendto+0x685/0x830 net/socket.c:2191
__do_sys_sendto net/socket.c:2203 [inline]
__se_sys_sendto net/socket.c:2199 [inline]
__x64_sys_sendto+0x125/0x1d0 net/socket.c:2199
do_syscall_64+0xd5/0x1f0
entry_SYSCALL_64_after_hwframe+0x6d/0x75
Uninit was created at:
slab_post_alloc_hook mm/slub.c:3804 [inline]
slab_alloc_node mm/slub.c:3845 [inline]
kmem_cache_alloc_node+0x613/0xc50 mm/slub.c:3888
kmalloc_reserve+0x13d/0x4a0 net/core/skbuff.c:577
__alloc_skb+0x35b/0x7a0 net/core/skbuff.c:668
alloc_skb include/linux/skbuff.h:1318 [inline]
alloc_skb_with_frags+0xc8/0xbf0 net/core/skbuff.c:6504
sock_alloc_send_pskb+0xa81/0xbf0 net/core/sock.c:2795
packet_alloc_skb net/packet/af_packet.c:2930 [inline]
packet_snd net/packet/af_packet.c:3024 [inline]
packet_sendmsg+0x722d/0x9ef0 net/packet/af_packet.c:3113
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0x30f/0x380 net/socket.c:745
__sys_sendto+0x685/0x830 net/socket.c:2191
__do_sys_sendto net/socket.c:2203 [inline]
__se_sys_sendto net/socket.c:2199 [inline]
__x64_sys_sendto+0x125/0x1d0 net/socket.c:2199
do_syscall_64+0xd5/0x1f0
entry_SYSCALL_64_after_hwframe+0x6d/0x75
CPU: 0 PID: 5033 Comm: syz-executor346 Not tainted 6.9.0-rc1-syzkaller-00005-g928a87efa423 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 02/29/2024</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2024-35973</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="34" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="34" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
batman-adv: Avoid infinite loop trying to resize local TT
If the MTU of one of an attached interface becomes too small to transmit
the local translation table then it must be resized to fit inside all
fragments (when enabled) or a single packet.
But if the MTU becomes too low to transmit even the header + the VLAN
specific part then the resizing of the local TT will never succeed. This
can for example happen when the usable space is 110 bytes and 11 VLANs are
on top of batman-adv. In this case, at least 116 byte would be needed.
There will just be an endless spam of
batman_adv: batadv0: Forced to purge local tt entries to fit new maximum fragment MTU (110)
in the log but the function will never finish. Problem here is that the
timeout will be halved all the time and will then stagnate at 0 and
therefore never be able to reduce the table even more.
There are other scenarios possible with a similar result. The number of
BATADV_TT_CLIENT_NOPURGE entries in the local TT can for example be too
high to fit inside a packet. Such a scenario can therefore happen also with
only a single VLAN + 7 non-purgable addresses - requiring at least 120
bytes.
While this should be handled proactively when:
* interface with too low MTU is added
* VLAN is added
* non-purgeable local mac is added
* MTU of an attached interface is reduced
* fragmentation setting gets disabled (which most likely requires dropping
attached interfaces)
not all of these scenarios can be prevented because batman-adv is only
consuming events without the the possibility to prevent these actions
(non-purgable MAC address added, MTU of an attached interface is reduced).
It is therefore necessary to also make sure that the code is able to handle
also the situations when there were already incompatible system
configuration are present.</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2024-35982</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="35" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="35" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:i2c: smbus: fix NULL function pointer dereferenceBaruch reported an OOPS when using the designware controller as targetonly. Target-only modes break the assumption of one transfer functionalways being available. Fix this by always checking the pointer in__i2c_transfer.[wsa: dropped the simplification in core-smbus to avoid theoretical regressions]</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2024-35984</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="36" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="36" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
rtnetlink: Correct nested IFLA_VF_VLAN_LIST attribute validation
Each attribute inside a nested IFLA_VF_VLAN_LIST is assumed to be a
struct ifla_vf_vlan_info so the size of such attribute needs to be at least
of sizeof(struct ifla_vf_vlan_info) which is 14 bytes.
The current size validation in do_setvfinfo is against NLA_HDRLEN (4 bytes)
which is less than sizeof(struct ifla_vf_vlan_info) so this validation
is not enough and a too small attribute might be cast to a
struct ifla_vf_vlan_info, this might result in an out of bands
read access when accessing the saved (casted) entry in ivvl.</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2024-36017</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="37" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="37" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
mmc: sdhci-msm: pervent access to suspended controller
Generic sdhci code registers LED device and uses host-&gt;runtime_suspended
flag to protect access to it. The sdhci-msm driver doesn&apos;t set this flag,
which causes a crash when LED is accessed while controller is runtime
suspended. Fix this by setting the flag correctly.</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2024-36029</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="38" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="38" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
net: fix out-of-bounds access in ops_init
net_alloc_generic is called by net_alloc, which is called without any
locking. It reads max_gen_ptrs, which is changed under pernet_ops_rwsem. It
is read twice, first to allocate an array, then to set s.len, which is
later used to limit the bounds of the array access.
It is possible that the array is allocated and another thread is
registering a new pernet ops, increments max_gen_ptrs, which is then used
to set s.len with a larger than allocated length for the variable array.
Fix it by reading max_gen_ptrs only once in net_alloc_generic. If
max_gen_ptrs is later incremented, it will be caught in net_assign_generic.</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2024-36883</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="39" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="39" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
tipc: fix UAF in error path
Sam Page (sam4k) working with Trend Micro Zero Day Initiative reported
a UAF in the tipc_buf_append() error path:
BUG: KASAN: slab-use-after-free in kfree_skb_list_reason+0x47e/0x4c0
linux/net/core/skbuff.c:1183
Read of size 8 at addr ffff88804d2a7c80 by task poc/8034
CPU: 1 PID: 8034 Comm: poc Not tainted 6.8.2 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.16.0-debian-1.16.0-5 04/01/2014
Call Trace:
&lt;IRQ&gt;
__dump_stack linux/lib/dump_stack.c:88
dump_stack_lvl+0xd9/0x1b0 linux/lib/dump_stack.c:106
print_address_description linux/mm/kasan/report.c:377
print_report+0xc4/0x620 linux/mm/kasan/report.c:488
kasan_report+0xda/0x110 linux/mm/kasan/report.c:601
kfree_skb_list_reason+0x47e/0x4c0 linux/net/core/skbuff.c:1183
skb_release_data+0x5af/0x880 linux/net/core/skbuff.c:1026
skb_release_all linux/net/core/skbuff.c:1094
__kfree_skb linux/net/core/skbuff.c:1108
kfree_skb_reason+0x12d/0x210 linux/net/core/skbuff.c:1144
kfree_skb linux/./include/linux/skbuff.h:1244
tipc_buf_append+0x425/0xb50 linux/net/tipc/msg.c:186
tipc_link_input+0x224/0x7c0 linux/net/tipc/link.c:1324
tipc_link_rcv+0x76e/0x2d70 linux/net/tipc/link.c:1824
tipc_rcv+0x45f/0x10f0 linux/net/tipc/node.c:2159
tipc_udp_recv+0x73b/0x8f0 linux/net/tipc/udp_media.c:390
udp_queue_rcv_one_skb+0xad2/0x1850 linux/net/ipv4/udp.c:2108
udp_queue_rcv_skb+0x131/0xb00 linux/net/ipv4/udp.c:2186
udp_unicast_rcv_skb+0x165/0x3b0 linux/net/ipv4/udp.c:2346
__udp4_lib_rcv+0x2594/0x3400 linux/net/ipv4/udp.c:2422
ip_protocol_deliver_rcu+0x30c/0x4e0 linux/net/ipv4/ip_input.c:205
ip_local_deliver_finish+0x2e4/0x520 linux/net/ipv4/ip_input.c:233
NF_HOOK linux/./include/linux/netfilter.h:314
NF_HOOK linux/./include/linux/netfilter.h:308
ip_local_deliver+0x18e/0x1f0 linux/net/ipv4/ip_input.c:254
dst_input linux/./include/net/dst.h:461
ip_rcv_finish linux/net/ipv4/ip_input.c:449
NF_HOOK linux/./include/linux/netfilter.h:314
NF_HOOK linux/./include/linux/netfilter.h:308
ip_rcv+0x2c5/0x5d0 linux/net/ipv4/ip_input.c:569
__netif_receive_skb_one_core+0x199/0x1e0 linux/net/core/dev.c:5534
__netif_receive_skb+0x1f/0x1c0 linux/net/core/dev.c:5648
process_backlog+0x101/0x6b0 linux/net/core/dev.c:5976
__napi_poll.constprop.0+0xba/0x550 linux/net/core/dev.c:6576
napi_poll linux/net/core/dev.c:6645
net_rx_action+0x95a/0xe90 linux/net/core/dev.c:6781
__do_softirq+0x21f/0x8e7 linux/kernel/softirq.c:553
do_softirq linux/kernel/softirq.c:454
do_softirq+0xb2/0xf0 linux/kernel/softirq.c:441
&lt;/IRQ&gt;
&lt;TASK&gt;
__local_bh_enable_ip+0x100/0x120 linux/kernel/softirq.c:381
local_bh_enable linux/./include/linux/bottom_half.h:33
rcu_read_unlock_bh linux/./include/linux/rcupdate.h:851
__dev_queue_xmit+0x871/0x3ee0 linux/net/core/dev.c:4378
dev_queue_xmit linux/./include/linux/netdevice.h:3169
neigh_hh_output linux/./include/net/neighbour.h:526
neigh_output linux/./include/net/neighbour.h:540
ip_finish_output2+0x169f/0x2550 linux/net/ipv4/ip_output.c:235
__ip_finish_output linux/net/ipv4/ip_output.c:313
__ip_finish_output+0x49e/0x950 linux/net/ipv4/ip_output.c:295
ip_finish_output+0x31/0x310 linux/net/ipv4/ip_output.c:323
NF_HOOK_COND linux/./include/linux/netfilter.h:303
ip_output+0x13b/0x2a0 linux/net/ipv4/ip_output.c:433
dst_output linux/./include/net/dst.h:451
ip_local_out linux/net/ipv4/ip_output.c:129
ip_send_skb+0x3e5/0x560 linux/net/ipv4/ip_output.c:1492
udp_send_skb+0x73f/0x1530 linux/net/ipv4/udp.c:963
udp_sendmsg+0x1a36/0x2b40 linux/net/ipv4/udp.c:1250
inet_sendmsg+0x105/0x140 linux/net/ipv4/af_inet.c:850
sock_sendmsg_nosec linux/net/socket.c:730
__sock_sendmsg linux/net/socket.c:745
__sys_sendto+0x42c/0x4e0 linux/net/socket.c:2191
__do_sys_sendto linux/net/socket.c:2203
__se_sys_sendto linux/net/socket.c:2199
__x64_sys_sendto+0xe0/0x1c0 linux/net/socket.c:2199
do_syscall_x64 linux/arch/x86/entry/common.c:52
do_syscall_
---truncated---</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2024-36886</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="40" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="40" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
mptcp: ensure snd_nxt is properly initialized on connect
Christoph reported a splat hinting at a corrupted snd_una:
WARNING: CPU: 1 PID: 38 at net/mptcp/protocol.c:1005 __mptcp_clean_una+0x4b3/0x620 net/mptcp/protocol.c:1005
Modules linked in:
CPU: 1 PID: 38 Comm: kworker/1:1 Not tainted 6.9.0-rc1-gbbeac67456c9 #59
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-2.el7 04/01/2014
Workqueue: events mptcp_worker
RIP: 0010:__mptcp_clean_una+0x4b3/0x620 net/mptcp/protocol.c:1005
Code: be 06 01 00 00 bf 06 01 00 00 e8 a8 12 e7 fe e9 00 fe ff ff e8
8e 1a e7 fe 0f b7 ab 3e 02 00 00 e9 d3 fd ff ff e8 7d 1a e7 fe
&lt;0f&gt; 0b 4c 8b bb e0 05 00 00 e9 74 fc ff ff e8 6a 1a e7 fe 0f 0b e9
RSP: 0018:ffffc9000013fd48 EFLAGS: 00010293
RAX: 0000000000000000 RBX: ffff8881029bd280 RCX: ffffffff82382fe4
RDX: ffff8881003cbd00 RSI: ffffffff823833c3 RDI: 0000000000000001
RBP: 0000000000000000 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000000 R11: fefefefefefefeff R12: ffff888138ba8000
R13: 0000000000000106 R14: ffff8881029bd908 R15: ffff888126560000
FS: 0000000000000000(0000) GS:ffff88813bd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f604a5dae38 CR3: 0000000101dac002 CR4: 0000000000170ef0
Call Trace:
&lt;TASK&gt;
__mptcp_clean_una_wakeup net/mptcp/protocol.c:1055 [inline]
mptcp_clean_una_wakeup net/mptcp/protocol.c:1062 [inline]
__mptcp_retrans+0x7f/0x7e0 net/mptcp/protocol.c:2615
mptcp_worker+0x434/0x740 net/mptcp/protocol.c:2767
process_one_work+0x1e0/0x560 kernel/workqueue.c:3254
process_scheduled_works kernel/workqueue.c:3335 [inline]
worker_thread+0x3c7/0x640 kernel/workqueue.c:3416
kthread+0x121/0x170 kernel/kthread.c:388
ret_from_fork+0x44/0x50 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:243
&lt;/TASK&gt;
When fallback to TCP happens early on a client socket, snd_nxt
is not yet initialized and any incoming ack will copy such value
into snd_una. If the mptcp worker (dumbly) tries mptcp-level
re-injection after such ack, that would unconditionally trigger a send
buffer cleanup using &apos;bad&apos; snd_una values.
We could easily disable re-injection for fallback sockets, but such
dumb behavior already helped catching a few subtle issues and a very
low to zero impact in practice.
Instead address the issue always initializing snd_nxt (and write_seq,
for consistency) at connect time.</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2024-36889</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="41" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="41" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
gpiolib: cdev: fix uninitialised kfifo
If a line is requested with debounce, and that results in debouncing
in software, and the line is subsequently reconfigured to enable edge
detection then the allocation of the kfifo to contain edge events is
overlooked. This results in events being written to and read from an
uninitialised kfifo. Read events are returned to userspace.
Initialise the kfifo in the case where the software debounce is
already active.</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2024-36898</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>6.1</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="42" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="42" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
gpiolib: cdev: Fix use after free in lineinfo_changed_notify
The use-after-free issue occurs as follows: when the GPIO chip device file
is being closed by invoking gpio_chrdev_release(), watched_lines is freed
by bitmap_free(), but the unregistration of lineinfo_changed_nb notifier
chain failed due to waiting write rwsem. Additionally, one of the GPIO
chip&apos;s lines is also in the release process and holds the notifier chain&apos;s
read rwsem. Consequently, a race condition leads to the use-after-free of
watched_lines.
Here is the typical stack when issue happened:
[free]
gpio_chrdev_release()
--&gt; bitmap_free(cdev-&gt;watched_lines) &lt;-- freed
--&gt; blocking_notifier_chain_unregister()
--&gt; down_write(&amp;nh-&gt;rwsem) &lt;-- waiting rwsem
--&gt; __down_write_common()
--&gt; rwsem_down_write_slowpath()
--&gt; schedule_preempt_disabled()
--&gt; schedule()
[use]
st54spi_gpio_dev_release()
--&gt; gpio_free()
--&gt; gpiod_free()
--&gt; gpiod_free_commit()
--&gt; gpiod_line_state_notify()
--&gt; blocking_notifier_call_chain()
--&gt; down_read(&amp;nh-&gt;rwsem); &lt;-- held rwsem
--&gt; notifier_call_chain()
--&gt; lineinfo_changed_notify()
--&gt; test_bit(xxxx, cdev-&gt;watched_lines) &lt;-- use after free
The side effect of the use-after-free issue is that a GPIO line event is
being generated for userspace where it shouldn&apos;t. However, since the chrdev
is being closed, userspace won&apos;t have the chance to read that event anyway.
To fix the issue, call the bitmap_free() function after the unregistration
of lineinfo_changed_nb notifier chain.</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2024-36899</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="43" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="43" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
ipv6: prevent NULL dereference in ip6_output()
According to syzbot, there is a chance that ip6_dst_idev()
returns NULL in ip6_output(). Most places in IPv6 stack
deal with a NULL idev just fine, but not here.
syzbot reported:
general protection fault, probably for non-canonical address 0xdffffc00000000bc: 0000 [#1] PREEMPT SMP KASAN PTI
KASAN: null-ptr-deref in range [0x00000000000005e0-0x00000000000005e7]
CPU: 0 PID: 9775 Comm: syz-executor.4 Not tainted 6.9.0-rc5-syzkaller-00157-g6a30653b604a #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024
RIP: 0010:ip6_output+0x231/0x3f0 net/ipv6/ip6_output.c:237
Code: 3c 1e 00 49 89 df 74 08 4c 89 ef e8 19 58 db f7 48 8b 44 24 20 49 89 45 00 49 89 c5 48 8d 9d e0 05 00 00 48 89 d8 48 c1 e8 03 &lt;42&gt; 0f b6 04 38 84 c0 4c 8b 74 24 28 0f 85 61 01 00 00 8b 1b 31 ff
RSP: 0018:ffffc9000927f0d8 EFLAGS: 00010202
RAX: 00000000000000bc RBX: 00000000000005e0 RCX: 0000000000040000
RDX: ffffc900131f9000 RSI: 0000000000004f47 RDI: 0000000000004f48
RBP: 0000000000000000 R08: ffffffff8a1f0b9a R09: 1ffffffff1f51fad
R10: dffffc0000000000 R11: fffffbfff1f51fae R12: ffff8880293ec8c0
R13: ffff88805d7fc000 R14: 1ffff1100527d91a R15: dffffc0000000000
FS: 00007f135c6856c0(0000) GS:ffff8880b9400000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000020000080 CR3: 0000000064096000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
&lt;TASK&gt;
NF_HOOK include/linux/netfilter.h:314 [inline]
ip6_xmit+0xefe/0x17f0 net/ipv6/ip6_output.c:358
sctp_v6_xmit+0x9f2/0x13f0 net/sctp/ipv6.c:248
sctp_packet_transmit+0x26ad/0x2ca0 net/sctp/output.c:653
sctp_packet_singleton+0x22c/0x320 net/sctp/outqueue.c:783
sctp_outq_flush_ctrl net/sctp/outqueue.c:914 [inline]
sctp_outq_flush+0x6d5/0x3e20 net/sctp/outqueue.c:1212
sctp_side_effects net/sctp/sm_sideeffect.c:1198 [inline]
sctp_do_sm+0x59cc/0x60c0 net/sctp/sm_sideeffect.c:1169
sctp_primitive_ASSOCIATE+0x95/0xc0 net/sctp/primitive.c:73
__sctp_connect+0x9cd/0xe30 net/sctp/socket.c:1234
sctp_connect net/sctp/socket.c:4819 [inline]
sctp_inet_connect+0x149/0x1f0 net/sctp/socket.c:4834
__sys_connect_file net/socket.c:2048 [inline]
__sys_connect+0x2df/0x310 net/socket.c:2065
__do_sys_connect net/socket.c:2075 [inline]
__se_sys_connect net/socket.c:2072 [inline]
__x64_sys_connect+0x7a/0x90 net/socket.c:2072
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf5/0x240 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2024-36901</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="44" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="44" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
ipv6: fib6_rules: avoid possible NULL dereference in fib6_rule_action()
syzbot is able to trigger the following crash [1],
caused by unsafe ip6_dst_idev() use.
Indeed ip6_dst_idev() can return NULL, and must always be checked.
[1]
Oops: general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN PTI
KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007]
CPU: 0 PID: 31648 Comm: syz-executor.0 Not tainted 6.9.0-rc4-next-20240417-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024
RIP: 0010:__fib6_rule_action net/ipv6/fib6_rules.c:237 [inline]
RIP: 0010:fib6_rule_action+0x241/0x7b0 net/ipv6/fib6_rules.c:267
Code: 02 00 00 49 8d 9f d8 00 00 00 48 89 d8 48 c1 e8 03 42 80 3c 20 00 74 08 48 89 df e8 f9 32 bf f7 48 8b 1b 48 89 d8 48 c1 e8 03 &lt;42&gt; 80 3c 20 00 74 08 48 89 df e8 e0 32 bf f7 4c 8b 03 48 89 ef 4c
RSP: 0018:ffffc9000fc1f2f0 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 1a772f98c8186700
RDX: 0000000000000003 RSI: ffffffff8bcac4e0 RDI: ffffffff8c1f9760
RBP: ffff8880673fb980 R08: ffffffff8fac15ef R09: 1ffffffff1f582bd
R10: dffffc0000000000 R11: fffffbfff1f582be R12: dffffc0000000000
R13: 0000000000000080 R14: ffff888076509000 R15: ffff88807a029a00
FS: 00007f55e82ca6c0(0000) GS:ffff8880b9400000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000001b31d23000 CR3: 0000000022b66000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
&lt;TASK&gt;
fib_rules_lookup+0x62c/0xdb0 net/core/fib_rules.c:317
fib6_rule_lookup+0x1fd/0x790 net/ipv6/fib6_rules.c:108
ip6_route_output_flags_noref net/ipv6/route.c:2637 [inline]
ip6_route_output_flags+0x38e/0x610 net/ipv6/route.c:2649
ip6_route_output include/net/ip6_route.h:93 [inline]
ip6_dst_lookup_tail+0x189/0x11a0 net/ipv6/ip6_output.c:1120
ip6_dst_lookup_flow+0xb9/0x180 net/ipv6/ip6_output.c:1250
sctp_v6_get_dst+0x792/0x1e20 net/sctp/ipv6.c:326
sctp_transport_route+0x12c/0x2e0 net/sctp/transport.c:455
sctp_assoc_add_peer+0x614/0x15c0 net/sctp/associola.c:662
sctp_connect_new_asoc+0x31d/0x6c0 net/sctp/socket.c:1099
__sctp_connect+0x66d/0xe30 net/sctp/socket.c:1197
sctp_connect net/sctp/socket.c:4819 [inline]
sctp_inet_connect+0x149/0x1f0 net/sctp/socket.c:4834
__sys_connect_file net/socket.c:2048 [inline]
__sys_connect+0x2df/0x310 net/socket.c:2065
__do_sys_connect net/socket.c:2075 [inline]
__se_sys_connect net/socket.c:2072 [inline]
__x64_sys_connect+0x7a/0x90 net/socket.c:2072
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf5/0x240 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2024-36902</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="45" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="45" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
ipv6: Fix potential uninit-value access in __ip6_make_skb()
As it was done in commit fc1092f51567 (&quot;ipv4: Fix uninit-value access in
__ip_make_skb()&quot;) for IPv4, check FLOWI_FLAG_KNOWN_NH on fl6-&gt;flowi6_flags
instead of testing HDRINCL on the socket to avoid a race condition which
causes uninit-value access.</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2024-36903</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="46" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="46" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
ARM: 9381/1: kasan: clear stale stack poison
We found below OOB crash:
[ 33.452494] ==================================================================
[ 33.453513] BUG: KASAN: stack-out-of-bounds in refresh_cpu_vm_stats.constprop.0+0xcc/0x2ec
[ 33.454660] Write of size 164 at addr c1d03d30 by task swapper/0/0
[ 33.455515]
[ 33.455767] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G O 6.1.25-mainline #1
[ 33.456880] Hardware name: Generic DT based system
[ 33.457555] unwind_backtrace from show_stack+0x18/0x1c
[ 33.458326] show_stack from dump_stack_lvl+0x40/0x4c
[ 33.459072] dump_stack_lvl from print_report+0x158/0x4a4
[ 33.459863] print_report from kasan_report+0x9c/0x148
[ 33.460616] kasan_report from kasan_check_range+0x94/0x1a0
[ 33.461424] kasan_check_range from memset+0x20/0x3c
[ 33.462157] memset from refresh_cpu_vm_stats.constprop.0+0xcc/0x2ec
[ 33.463064] refresh_cpu_vm_stats.constprop.0 from tick_nohz_idle_stop_tick+0x180/0x53c
[ 33.464181] tick_nohz_idle_stop_tick from do_idle+0x264/0x354
[ 33.465029] do_idle from cpu_startup_entry+0x20/0x24
[ 33.465769] cpu_startup_entry from rest_init+0xf0/0xf4
[ 33.466528] rest_init from arch_post_acpi_subsys_init+0x0/0x18
[ 33.467397]
[ 33.467644] The buggy address belongs to stack of task swapper/0/0
[ 33.468493] and is located at offset 112 in frame:
[ 33.469172] refresh_cpu_vm_stats.constprop.0+0x0/0x2ec
[ 33.469917]
[ 33.470165] This frame has 2 objects:
[ 33.470696] [32, 76) &apos;global_zone_diff&apos;
[ 33.470729] [112, 276) &apos;global_node_diff&apos;
[ 33.471294]
[ 33.472095] The buggy address belongs to the physical page:
[ 33.472862] page:3cd72da8 refcount:1 mapcount:0 mapping:00000000 index:0x0 pfn:0x41d03
[ 33.473944] flags: 0x1000(reserved|zone=0)
[ 33.474565] raw: 00001000 ed741470 ed741470 00000000 00000000 00000000 ffffffff 00000001
[ 33.475656] raw: 00000000
[ 33.476050] page dumped because: kasan: bad access detected
[ 33.476816]
[ 33.477061] Memory state around the buggy address:
[ 33.477732] c1d03c00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[ 33.478630] c1d03c80: 00 00 00 00 00 00 00 00 f1 f1 f1 f1 00 00 00 00
[ 33.479526] &gt;c1d03d00: 00 04 f2 f2 f2 f2 00 00 00 00 00 00 f1 f1 f1 f1
[ 33.480415] ^
[ 33.481195] c1d03d80: 00 00 00 00 00 00 00 00 00 00 04 f3 f3 f3 f3 f3
[ 33.482088] c1d03e00: f3 f3 f3 f3 00 00 00 00 00 00 00 00 00 00 00 00
[ 33.482978] ==================================================================
We find the root cause of this OOB is that arm does not clear stale stack
poison in the case of cpuidle.
This patch refer to arch/arm64/kernel/sleep.S to resolve this issue.
From cited commit [1] that explain the problem
Functions which the compiler has instrumented for KASAN place poison on
the stack shadow upon entry and remove this poison prior to returning.
In the case of cpuidle, CPUs exit the kernel a number of levels deep in
C code. Any instrumented functions on this critical path will leave
portions of the stack shadow poisoned.
If CPUs lose context and return to the kernel via a cold path, we
restore a prior context saved in __cpu_suspend_enter are forgotten, and
we never remove the poison they placed in the stack shadow area by
functions calls between this and the actual exit of the kernel.
Thus, (depending on stackframe layout) subsequent calls to instrumented
functions may hit this stale poison, resulting in (spurious) KASAN
splats to the console.
To avoid this, clear any stale poison from the idle thread for a CPU
prior to bringing a CPU online.
From cited commit [2]
Extend to check for CONFIG_KASAN_STACK
[1] commit 0d97e6d8024c (&quot;arm64: kasan: clear stale stack poison&quot;)
[2] commit d56a9ef84bd0 (&quot;kasan, arm64: unpoison stack only with CONFIG_KASAN_STACK&quot;)</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2024-36906</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="47" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="47" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
blk-iocost: do not WARN if iocg was already offlined
In iocg_pay_debt(), warn is triggered if &apos;active_list&apos; is empty, which
is intended to confirm iocg is active when it has debt. However, warn
can be triggered during a blkcg or disk removal, if iocg_waitq_timer_fn()
is run at that time:
WARNING: CPU: 0 PID: 2344971 at block/blk-iocost.c:1402 iocg_pay_debt+0x14c/0x190
Call trace:
iocg_pay_debt+0x14c/0x190
iocg_kick_waitq+0x438/0x4c0
iocg_waitq_timer_fn+0xd8/0x130
__run_hrtimer+0x144/0x45c
__hrtimer_run_queues+0x16c/0x244
hrtimer_interrupt+0x2cc/0x7b0
The warn in this situation is meaningless. Since this iocg is being
removed, the state of the &apos;active_list&apos; is irrelevant, and &apos;waitq_timer&apos;
is canceled after removing &apos;active_list&apos; in ioc_pd_free(), which ensures
iocg is freed after iocg_waitq_timer_fn() returns.
Therefore, add the check if iocg was already offlined to avoid warn
when removing a blkcg or disk.</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2024-36908</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Low</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>0.0</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="48" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="48" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
block: fix overflow in blk_ioctl_discard()
There is no check for overflow of &apos;start + len&apos; in blk_ioctl_discard().
Hung task occurs if submit an discard ioctl with the following param:
start = 0x80000000000ff000, len = 0x8000000000fff000;
Add the overflow validation now.</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2024-36917</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Low</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>0.0</BaseScore>
<Vector></Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="49" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="49" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Release hbalock before calling lpfc_worker_wake_up()
lpfc_worker_wake_up() calls the lpfc_work_done() routine, which takes the
hbalock. Thus, lpfc_worker_wake_up() should not be called while holding the
hbalock to avoid potential deadlock.</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2024-36924</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>4.7</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="50" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="50" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
s390/qeth: Fix kernel panic after setting hsuid
Symptom:
When the hsuid attribute is set for the first time on an IQD Layer3
device while the corresponding network interface is already UP,
the kernel will try to execute a napi function pointer that is NULL.
Example:
---------------------------------------------------------------------------
[ 2057.572696] illegal operation: 0001 ilc:1 [#1] SMP
[ 2057.572702] Modules linked in: af_iucv qeth_l3 zfcp scsi_transport_fc sunrpc nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6
nft_reject nft_ct nf_tables_set nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip_set nf_tables libcrc32c nfnetlink ghash_s390 prng xts aes_s390 des_s390 de
s_generic sha3_512_s390 sha3_256_s390 sha512_s390 vfio_ccw vfio_mdev mdev vfio_iommu_type1 eadm_sch vfio ext4 mbcache jbd2 qeth_l2 bridge stp llc dasd_eckd_mod qeth dasd_mod
qdio ccwgroup pkey zcrypt
[ 2057.572739] CPU: 6 PID: 60182 Comm: stress_client Kdump: loaded Not tainted 4.18.0-541.el8.s390x #1
[ 2057.572742] Hardware name: IBM 3931 A01 704 (LPAR)
[ 2057.572744] Krnl PSW : 0704f00180000000 0000000000000002 (0x2)
[ 2057.572748] R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:3 PM:0 RI:0 EA:3
[ 2057.572751] Krnl GPRS: 0000000000000004 0000000000000000 00000000a3b008d8 0000000000000000
[ 2057.572754] 00000000a3b008d8 cb923a29c779abc5 0000000000000000 00000000814cfd80
[ 2057.572756] 000000000000012c 0000000000000000 00000000a3b008d8 00000000a3b008d8
[ 2057.572758] 00000000bab6d500 00000000814cfd80 0000000091317e46 00000000814cfc68
[ 2057.572762] Krnl Code:#0000000000000000: 0000 illegal
&gt;0000000000000002: 0000 illegal
0000000000000004: 0000 illegal
0000000000000006: 0000 illegal
0000000000000008: 0000 illegal
000000000000000a: 0000 illegal
000000000000000c: 0000 illegal
000000000000000e: 0000 illegal
[ 2057.572800] Call Trace:
[ 2057.572801] ([&lt;00000000ec639700&gt;] 0xec639700)
[ 2057.572803] [&lt;00000000913183e2&gt;] net_rx_action+0x2ba/0x398
[ 2057.572809] [&lt;0000000091515f76&gt;] __do_softirq+0x11e/0x3a0
[ 2057.572813] [&lt;0000000090ce160c&gt;] do_softirq_own_stack+0x3c/0x58
[ 2057.572817] ([&lt;0000000090d2cbd6&gt;] do_softirq.part.1+0x56/0x60)
[ 2057.572822] [&lt;0000000090d2cc60&gt;] __local_bh_enable_ip+0x80/0x98
[ 2057.572825] [&lt;0000000091314706&gt;] __dev_queue_xmit+0x2be/0xd70
[ 2057.572827] [&lt;000003ff803dd6d6&gt;] afiucv_hs_send+0x24e/0x300 [af_iucv]
[ 2057.572830] [&lt;000003ff803dd88a&gt;] iucv_send_ctrl+0x102/0x138 [af_iucv]
[ 2057.572833] [&lt;000003ff803de72a&gt;] iucv_sock_connect+0x37a/0x468 [af_iucv]
[ 2057.572835] [&lt;00000000912e7e90&gt;] __sys_connect+0xa0/0xd8
[ 2057.572839] [&lt;00000000912e9580&gt;] sys_socketcall+0x228/0x348
[ 2057.572841] [&lt;0000000091514e1a&gt;] system_call+0x2a6/0x2c8
[ 2057.572843] Last Breaking-Event-Address:
[ 2057.572844] [&lt;0000000091317e44&gt;] __napi_poll+0x4c/0x1d8
[ 2057.572846]
[ 2057.572847] Kernel panic - not syncing: Fatal exception in interrupt
-------------------------------------------------------------------------------------------
Analysis:
There is one napi structure per out_q: card-&gt;qdio.out_qs[i].napi
The napi.poll functions are set during qeth_open().
Since
commit 1cfef80d4c2b (&quot;s390/qeth: Don&apos;t call dev_close/dev_open (DOWN/UP)&quot;)
qeth_set_offline()/qeth_set_online() no longer call dev_close()/
dev_open(). So if qeth_free_qdio_queues() cleared
card-&gt;qdio.out_qs[i].napi.poll while the network interface was UP and the
card was offline, they are not set again.
Reproduction:
chzdev -e $devno layer2=0
ip link set dev $network_interface up
echo 0 &gt; /sys/bus/ccw
---truncated---</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2024-36928</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>4.4</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="51" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="51" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
net: core: reject skb_copy(_expand) for fraglist GSO skbs
SKB_GSO_FRAGLIST skbs must not be linearized, otherwise they become
invalid. Return NULL if such an skb is passed to skb_copy or
skb_copy_expand, in order to prevent a crash on a potential later
call to skb_gso_segment.</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2024-36929</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="52" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="52" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
amd/amdkfd: sync all devices to wait all processes being evicted
If there are more than one device doing reset in parallel, the first
device will call kfd_suspend_all_processes() to evict all processes
on all devices, this call takes time to finish. other device will
start reset and recover without waiting. if the process has not been
evicted before doing recover, it will be restored, then caused page
fault.</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2024-36949</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>4.7</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="53" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="53" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
tipc: fix a possible memleak in tipc_buf_append
__skb_linearize() doesn&apos;t free the skb when it fails, so move
&apos;*buf = NULL&apos; after __skb_linearize(), so that the skb can be
freed on the err path.</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2024-36954</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="54" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="54" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
octeontx2-af: avoid off-by-one read from userspace
We try to access count + 1 byte from userspace with memdup_user(buffer,
count + 1). However, the userspace only provides buffer of count bytes and
only these count bytes are verified to be okay to access. To ensure the
copied buffer is NUL terminated, we use memdup_user_nul instead.</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2024-36957</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="55" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="55" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
fs/9p: only translate RWX permissions for plain 9P2000
Garbage in plain 9P2000&apos;s perm bits is allowed through, which causes it
to be able to set (among others) the suid bit. This was presumably not
the intent since the unix extended bits are handled explicitly and
conditionally on .u.</Note>
</Notes>
<ReleaseDate>2024-06-14</ReleaseDate>
<CVE>CVE-2024-36964</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-22.03-LTS-SP3</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:N</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-06-14</DATE>
<URL>https://www.openeuler.org/en/security/safety-bulletin/detail.html?id=openEuler-SA-2024-1707</URL>
</Remediation>
</Remediations>
</Vulnerability>
</cvrfdoc>