cvrf2cusa/cvrf/2024/cvrf-openEuler-SA-2024-1897.xml
Jia Chao fd42fc96e3 release v0.1.2
Signed-off-by: Jia Chao <jiac13@chinaunicom.cn>
2024-08-01 10:25:22 +08:00

3897 lines
178 KiB
XML

<?xml version="1.0" encoding="UTF-8"?>
<cvrfdoc xmlns="http://www.icasi.org/CVRF/schema/cvrf/1.1" xmlns:cvrf="http://www.icasi.org/CVRF/schema/cvrf/1.1">
<DocumentTitle xml:lang="en">An update for kernel is now available for openEuler-24.03-LTS</DocumentTitle>
<DocumentType>Security Advisory</DocumentType>
<DocumentPublisher Type="Vendor">
<ContactDetails>openeuler-security@openeuler.org</ContactDetails>
<IssuingAuthority>openEuler security committee</IssuingAuthority>
</DocumentPublisher>
<DocumentTracking>
<Identification>
<ID>openEuler-SA-2024-1897</ID>
</Identification>
<Status>Final</Status>
<Version>1.0</Version>
<RevisionHistory>
<Revision>
<Number>1.0</Number>
<Date>2024-07-26</Date>
<Description>Initial</Description>
</Revision>
</RevisionHistory>
<InitialReleaseDate>2024-07-26</InitialReleaseDate>
<CurrentReleaseDate>2024-07-26</CurrentReleaseDate>
<Generator>
<Engine>openEuler SA Tool V1.0</Engine>
<Date>2024-07-26</Date>
</Generator>
</DocumentTracking>
<DocumentNotes>
<Note Title="Synopsis" Type="General" Ordinal="1" xml:lang="en">kernel security update</Note>
<Note Title="Summary" Type="General" Ordinal="2" xml:lang="en">An update for kernel is now available for openEuler-24.03-LTS</Note>
<Note Title="Description" Type="General" Ordinal="3" xml:lang="en">The Linux Kernel, the operating system core itself.
Security Fix(es):
In the Linux kernel, the following vulnerability has been resolved:
PCI: of_property: Return error for int_map allocation failure
Return -ENOMEM from of_pci_prop_intr_map() if kcalloc() fails to prevent a
NULL pointer dereference in this case.
[bhelgaas: commit log](CVE-2024-34030)
In the Linux kernel, the following vulnerability has been resolved:
drm/arm/malidp: fix a possible null pointer dereference
In malidp_mw_connector_reset, new memory is allocated with kzalloc, but
no check is performed. In order to prevent null pointer dereferencing,
ensure that mw_state is checked before calling
__drm_atomic_helper_connector_reset.(CVE-2024-36014)
In the Linux kernel, the following vulnerability has been resolved:
tty: n_gsm: fix possible out-of-bounds in gsm0_receive()
Assuming the following:
- side A configures the n_gsm in basic option mode
- side B sends the header of a basic option mode frame with data length 1
- side A switches to advanced option mode
- side B sends 2 data bytes which exceeds gsm-&gt;len
Reason: gsm-&gt;len is not used in advanced option mode.
- side A switches to basic option mode
- side B keeps sending until gsm0_receive() writes past gsm-&gt;buf
Reason: Neither gsm-&gt;state nor gsm-&gt;len have been reset after
reconfiguration.
Fix this by changing gsm-&gt;count to gsm-&gt;len comparison from equal to less
than. Also add upper limit checks against the constant MAX_MRU in
gsm0_receive() and gsm1_receive() to harden against memory corruption of
gsm-&gt;len and gsm-&gt;mru.
All other checks remain as we still need to limit the data according to the
user configuration and actual payload size.(CVE-2024-36016)
In the Linux kernel, the following vulnerability has been resolved:
keys: Fix overwrite of key expiration on instantiation
The expiry time of a key is unconditionally overwritten during
instantiation, defaulting to turn it permanent. This causes a problem
for DNS resolution as the expiration set by user-space is overwritten to
TIME64_MAX, disabling further DNS updates. Fix this by restoring the
condition that key_set_expiry is only called when the pre-parser sets a
specific expiry.(CVE-2024-36031)
In the Linux kernel, the following vulnerability has been resolved:
mm/userfaultfd: reset ptes when close() for wr-protected ones
Userfaultfd unregister includes a step to remove wr-protect bits from all
the relevant pgtable entries, but that only covered an explicit
UFFDIO_UNREGISTER ioctl, not a close() on the userfaultfd itself. Cover
that too. This fixes a WARN trace.
The only user visible side effect is the user can observe leftover
wr-protect bits even if the user close()ed on an userfaultfd when
releasing the last reference of it. However hopefully that should be
harmless, and nothing bad should happen even if so.
This change is now more important after the recent page-table-check
patch we merged in mm-unstable (446dd9ad37d0 (&quot;mm/page_table_check:
support userfault wr-protect entries&quot;)), as we&apos;ll do sanity check on
uffd-wp bits without vma context. So it&apos;s better if we can 100%
guarantee no uffd-wp bit leftovers, to make sure each report will be
valid.(CVE-2024-36881)
In the Linux kernel, the following vulnerability has been resolved:
nfs: Handle error of rpc_proc_register() in nfs_net_init().
syzkaller reported a warning [0] triggered while destroying immature
netns.
rpc_proc_register() was called in init_nfs_fs(), but its error
has been ignored since at least the initial commit 1da177e4c3f4
(&quot;Linux-2.6.12-rc2&quot;).
Recently, commit d47151b79e32 (&quot;nfs: expose /proc/net/sunrpc/nfs
in net namespaces&quot;) converted the procfs to per-netns and made
the problem more visible.
Even when rpc_proc_register() fails, nfs_net_init() could succeed,
and thus nfs_net_exit() will be called while destroying the netns.
Then, remove_proc_entry() will be called for non-existing proc
directory and trigger the warning below.
Let&apos;s handle the error of rpc_proc_register() properly in nfs_net_init().
[0]:
name &apos;nfs&apos;
WARNING: CPU: 1 PID: 1710 at fs/proc/generic.c:711 remove_proc_entry+0x1bb/0x2d0 fs/proc/generic.c:711
Modules linked in:
CPU: 1 PID: 1710 Comm: syz-executor.2 Not tainted 6.8.0-12822-gcd51db110a7e #12
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
RIP: 0010:remove_proc_entry+0x1bb/0x2d0 fs/proc/generic.c:711
Code: 41 5d 41 5e c3 e8 85 09 b5 ff 48 c7 c7 88 58 64 86 e8 09 0e 71 02 e8 74 09 b5 ff 4c 89 e6 48 c7 c7 de 1b 80 84 e8 c5 ad 97 ff &lt;0f&gt; 0b eb b1 e8 5c 09 b5 ff 48 c7 c7 88 58 64 86 e8 e0 0d 71 02 eb
RSP: 0018:ffffc9000c6d7ce0 EFLAGS: 00010286
RAX: 0000000000000000 RBX: ffff8880422b8b00 RCX: ffffffff8110503c
RDX: ffff888030652f00 RSI: ffffffff81105045 RDI: 0000000000000001
RBP: 0000000000000000 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000001 R11: ffffffff81bb62cb R12: ffffffff84807ffc
R13: ffff88804ad6fcc0 R14: ffffffff84807ffc R15: ffffffff85741ff8
FS: 00007f30cfba8640(0000) GS:ffff88807dd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007ff51afe8000 CR3: 000000005a60a005 CR4: 0000000000770ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
&lt;TASK&gt;
rpc_proc_unregister+0x64/0x70 net/sunrpc/stats.c:310
nfs_net_exit+0x1c/0x30 fs/nfs/inode.c:2438
ops_exit_list+0x62/0xb0 net/core/net_namespace.c:170
setup_net+0x46c/0x660 net/core/net_namespace.c:372
copy_net_ns+0x244/0x590 net/core/net_namespace.c:505
create_new_namespaces+0x2ed/0x770 kernel/nsproxy.c:110
unshare_nsproxy_namespaces+0xae/0x160 kernel/nsproxy.c:228
ksys_unshare+0x342/0x760 kernel/fork.c:3322
__do_sys_unshare kernel/fork.c:3393 [inline]
__se_sys_unshare kernel/fork.c:3391 [inline]
__x64_sys_unshare+0x1f/0x30 kernel/fork.c:3391
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0x4f/0x110 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x46/0x4e
RIP: 0033:0x7f30d0febe5d
Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 &lt;48&gt; 3d 01 f0 ff ff 73 01 c3 48 8b 0d 73 9f 1b 00 f7 d8 64 89 01 48
RSP: 002b:00007f30cfba7cc8 EFLAGS: 00000246 ORIG_RAX: 0000000000000110
RAX: ffffffffffffffda RBX: 00000000004bbf80 RCX: 00007f30d0febe5d
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 000000006c020600
RBP: 00000000004bbf80 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000002
R13: 000000000000000b R14: 00007f30d104c530 R15: 0000000000000000
&lt;/TASK&gt;(CVE-2024-36939)
In the Linux kernel, the following vulnerability has been resolved:
net: bridge: mst: fix vlan use-after-free
syzbot reported a suspicious rcu usage[1] in bridge&apos;s mst code. While
fixing it I noticed that nothing prevents a vlan to be freed while
walking the list from the same path (br forward delay timer). Fix the rcu
usage and also make sure we are not accessing freed memory by making
br_mst_vlan_set_state use rcu read lock.
[1]
WARNING: suspicious RCU usage
6.9.0-rc6-syzkaller #0 Not tainted
-----------------------------
net/bridge/br_private.h:1599 suspicious rcu_dereference_protected() usage!
...
stack backtrace:
CPU: 1 PID: 8017 Comm: syz-executor.1 Not tainted 6.9.0-rc6-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024
Call Trace:
&lt;IRQ&gt;
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:114
lockdep_rcu_suspicious+0x221/0x340 kernel/locking/lockdep.c:6712
nbp_vlan_group net/bridge/br_private.h:1599 [inline]
br_mst_set_state+0x1ea/0x650 net/bridge/br_mst.c:105
br_set_state+0x28a/0x7b0 net/bridge/br_stp.c:47
br_forward_delay_timer_expired+0x176/0x440 net/bridge/br_stp_timer.c:88
call_timer_fn+0x18e/0x650 kernel/time/timer.c:1793
expire_timers kernel/time/timer.c:1844 [inline]
__run_timers kernel/time/timer.c:2418 [inline]
__run_timer_base+0x66a/0x8e0 kernel/time/timer.c:2429
run_timer_base kernel/time/timer.c:2438 [inline]
run_timer_softirq+0xb7/0x170 kernel/time/timer.c:2448
__do_softirq+0x2c6/0x980 kernel/softirq.c:554
invoke_softirq kernel/softirq.c:428 [inline]
__irq_exit_rcu+0xf2/0x1c0 kernel/softirq.c:633
irq_exit_rcu+0x9/0x30 kernel/softirq.c:645
instr_sysvec_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1043 [inline]
sysvec_apic_timer_interrupt+0xa6/0xc0 arch/x86/kernel/apic/apic.c:1043
&lt;/IRQ&gt;
&lt;TASK&gt;
asm_sysvec_apic_timer_interrupt+0x1a/0x20 arch/x86/include/asm/idtentry.h:702
RIP: 0010:lock_acquire+0x264/0x550 kernel/locking/lockdep.c:5758
Code: 2b 00 74 08 4c 89 f7 e8 ba d1 84 00 f6 44 24 61 02 0f 85 85 01 00 00 41 f7 c7 00 02 00 00 74 01 fb 48 c7 44 24 40 0e 36 e0 45 &lt;4b&gt; c7 44 25 00 00 00 00 00 43 c7 44 25 09 00 00 00 00 43 c7 44 25
RSP: 0018:ffffc90013657100 EFLAGS: 00000206
RAX: 0000000000000001 RBX: 1ffff920026cae2c RCX: 0000000000000001
RDX: dffffc0000000000 RSI: ffffffff8bcaca00 RDI: ffffffff8c1eaa60
RBP: ffffc90013657260 R08: ffffffff92efe507 R09: 1ffffffff25dfca0
R10: dffffc0000000000 R11: fffffbfff25dfca1 R12: 1ffff920026cae28
R13: dffffc0000000000 R14: ffffc90013657160 R15: 0000000000000246(CVE-2024-36979)
In the Linux kernel, the following vulnerability has been resolved:
scsi: qedf: Ensure the copied buf is NUL terminated
Currently, we allocate a count-sized kernel buffer and copy count from
userspace to that buffer. Later, we use kstrtouint on this buffer but we
don&apos;t ensure that the string is terminated inside the buffer, this can
lead to OOB read when using kstrtouint. Fix this issue by using
memdup_user_nul instead of memdup_user.(CVE-2024-38559)
In the Linux kernel, the following vulnerability has been resolved:
ecryptfs: Fix buffer size for tag 66 packet
The &apos;TAG 66 Packet Format&apos; description is missing the cipher code and
checksum fields that are packed into the message packet. As a result,
the buffer allocated for the packet is 3 bytes too small and
write_tag_66_packet() will write up to 3 bytes past the end of the
buffer.
Fix this by increasing the size of the allocation so the whole packet
will always fit in the buffer.
This fixes the below kasan slab-out-of-bounds bug:
BUG: KASAN: slab-out-of-bounds in ecryptfs_generate_key_packet_set+0x7d6/0xde0
Write of size 1 at addr ffff88800afbb2a5 by task touch/181
CPU: 0 PID: 181 Comm: touch Not tainted 6.6.13-gnu #1 4c9534092be820851bb687b82d1f92a426598dc6
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2/GNU Guix 04/01/2014
Call Trace:
&lt;TASK&gt;
dump_stack_lvl+0x4c/0x70
print_report+0xc5/0x610
? ecryptfs_generate_key_packet_set+0x7d6/0xde0
? kasan_complete_mode_report_info+0x44/0x210
? ecryptfs_generate_key_packet_set+0x7d6/0xde0
kasan_report+0xc2/0x110
? ecryptfs_generate_key_packet_set+0x7d6/0xde0
__asan_store1+0x62/0x80
ecryptfs_generate_key_packet_set+0x7d6/0xde0
? __pfx_ecryptfs_generate_key_packet_set+0x10/0x10
? __alloc_pages+0x2e2/0x540
? __pfx_ovl_open+0x10/0x10 [overlay 30837f11141636a8e1793533a02e6e2e885dad1d]
? dentry_open+0x8f/0xd0
ecryptfs_write_metadata+0x30a/0x550
? __pfx_ecryptfs_write_metadata+0x10/0x10
? ecryptfs_get_lower_file+0x6b/0x190
ecryptfs_initialize_file+0x77/0x150
ecryptfs_create+0x1c2/0x2f0
path_openat+0x17cf/0x1ba0
? __pfx_path_openat+0x10/0x10
do_filp_open+0x15e/0x290
? __pfx_do_filp_open+0x10/0x10
? __kasan_check_write+0x18/0x30
? _raw_spin_lock+0x86/0xf0
? __pfx__raw_spin_lock+0x10/0x10
? __kasan_check_write+0x18/0x30
? alloc_fd+0xf4/0x330
do_sys_openat2+0x122/0x160
? __pfx_do_sys_openat2+0x10/0x10
__x64_sys_openat+0xef/0x170
? __pfx___x64_sys_openat+0x10/0x10
do_syscall_64+0x60/0xd0
entry_SYSCALL_64_after_hwframe+0x6e/0xd8
RIP: 0033:0x7f00a703fd67
Code: 25 00 00 41 00 3d 00 00 41 00 74 37 64 8b 04 25 18 00 00 00 85 c0 75 5b 44 89 e2 48 89 ee bf 9c ff ff ff b8 01 01 00 00 0f 05 &lt;48&gt; 3d 00 f0 ff ff 0f 87 85 00 00 00 48 83 c4 68 5d 41 5c c3 0f 1f
RSP: 002b:00007ffc088e30b0 EFLAGS: 00000246 ORIG_RAX: 0000000000000101
RAX: ffffffffffffffda RBX: 00007ffc088e3368 RCX: 00007f00a703fd67
RDX: 0000000000000941 RSI: 00007ffc088e48d7 RDI: 00000000ffffff9c
RBP: 00007ffc088e48d7 R08: 0000000000000001 R09: 0000000000000000
R10: 00000000000001b6 R11: 0000000000000246 R12: 0000000000000941
R13: 0000000000000000 R14: 00007ffc088e48d7 R15: 00007f00a7180040
&lt;/TASK&gt;
Allocated by task 181:
kasan_save_stack+0x2f/0x60
kasan_set_track+0x29/0x40
kasan_save_alloc_info+0x25/0x40
__kasan_kmalloc+0xc5/0xd0
__kmalloc+0x66/0x160
ecryptfs_generate_key_packet_set+0x6d2/0xde0
ecryptfs_write_metadata+0x30a/0x550
ecryptfs_initialize_file+0x77/0x150
ecryptfs_create+0x1c2/0x2f0
path_openat+0x17cf/0x1ba0
do_filp_open+0x15e/0x290
do_sys_openat2+0x122/0x160
__x64_sys_openat+0xef/0x170
do_syscall_64+0x60/0xd0
entry_SYSCALL_64_after_hwframe+0x6e/0xd8(CVE-2024-38578)
In the Linux kernel, the following vulnerability has been resolved:
netrom: fix possible dead-lock in nr_rt_ioctl()
syzbot loves netrom, and found a possible deadlock in nr_rt_ioctl [1]
Make sure we always acquire nr_node_list_lock before nr_node_lock(nr_node)
[1]
WARNING: possible circular locking dependency detected
6.9.0-rc7-syzkaller-02147-g654de42f3fc6 #0 Not tainted
------------------------------------------------------
syz-executor350/5129 is trying to acquire lock:
ffff8880186e2070 (&amp;nr_node-&gt;node_lock){+...}-{2:2}, at: spin_lock_bh include/linux/spinlock.h:356 [inline]
ffff8880186e2070 (&amp;nr_node-&gt;node_lock){+...}-{2:2}, at: nr_node_lock include/net/netrom.h:152 [inline]
ffff8880186e2070 (&amp;nr_node-&gt;node_lock){+...}-{2:2}, at: nr_dec_obs net/netrom/nr_route.c:464 [inline]
ffff8880186e2070 (&amp;nr_node-&gt;node_lock){+...}-{2:2}, at: nr_rt_ioctl+0x1bb/0x1090 net/netrom/nr_route.c:697
but task is already holding lock:
ffffffff8f7053b8 (nr_node_list_lock){+...}-{2:2}, at: spin_lock_bh include/linux/spinlock.h:356 [inline]
ffffffff8f7053b8 (nr_node_list_lock){+...}-{2:2}, at: nr_dec_obs net/netrom/nr_route.c:462 [inline]
ffffffff8f7053b8 (nr_node_list_lock){+...}-{2:2}, at: nr_rt_ioctl+0x10a/0x1090 net/netrom/nr_route.c:697
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-&gt; #1 (nr_node_list_lock){+...}-{2:2}:
lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5754
__raw_spin_lock_bh include/linux/spinlock_api_smp.h:126 [inline]
_raw_spin_lock_bh+0x35/0x50 kernel/locking/spinlock.c:178
spin_lock_bh include/linux/spinlock.h:356 [inline]
nr_remove_node net/netrom/nr_route.c:299 [inline]
nr_del_node+0x4b4/0x820 net/netrom/nr_route.c:355
nr_rt_ioctl+0xa95/0x1090 net/netrom/nr_route.c:683
sock_do_ioctl+0x158/0x460 net/socket.c:1222
sock_ioctl+0x629/0x8e0 net/socket.c:1341
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:904 [inline]
__se_sys_ioctl+0xfc/0x170 fs/ioctl.c:890
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf5/0x240 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
-&gt; #0 (&amp;nr_node-&gt;node_lock){+...}-{2:2}:
check_prev_add kernel/locking/lockdep.c:3134 [inline]
check_prevs_add kernel/locking/lockdep.c:3253 [inline]
validate_chain+0x18cb/0x58e0 kernel/locking/lockdep.c:3869
__lock_acquire+0x1346/0x1fd0 kernel/locking/lockdep.c:5137
lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5754
__raw_spin_lock_bh include/linux/spinlock_api_smp.h:126 [inline]
_raw_spin_lock_bh+0x35/0x50 kernel/locking/spinlock.c:178
spin_lock_bh include/linux/spinlock.h:356 [inline]
nr_node_lock include/net/netrom.h:152 [inline]
nr_dec_obs net/netrom/nr_route.c:464 [inline]
nr_rt_ioctl+0x1bb/0x1090 net/netrom/nr_route.c:697
sock_do_ioctl+0x158/0x460 net/socket.c:1222
sock_ioctl+0x629/0x8e0 net/socket.c:1341
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:904 [inline]
__se_sys_ioctl+0xfc/0x170 fs/ioctl.c:890
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf5/0x240 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(nr_node_list_lock);
lock(&amp;nr_node-&gt;node_lock);
lock(nr_node_list_lock);
lock(&amp;nr_node-&gt;node_lock);
*** DEADLOCK ***
1 lock held by syz-executor350/5129:
#0: ffffffff8f7053b8 (nr_node_list_lock){+...}-{2:2}, at: spin_lock_bh include/linux/spinlock.h:356 [inline]
#0: ffffffff8f7053b8 (nr_node_list_lock){+...}-{2:2}, at: nr_dec_obs net/netrom/nr_route.c:462 [inline]
#0: ffffffff8f70
---truncated---(CVE-2024-38589)
In the Linux kernel, the following vulnerability has been resolved:
ALSA: timer: Set lower bound of start tick time
Currently ALSA timer doesn&apos;t have the lower limit of the start tick
time, and it allows a very small size, e.g. 1 tick with 1ns resolution
for hrtimer. Such a situation may lead to an unexpected RCU stall,
where the callback repeatedly queuing the expire update, as reported
by fuzzer.
This patch introduces a sanity check of the timer start tick time, so
that the system returns an error when a too small start size is set.
As of this patch, the lower limit is hard-coded to 100us, which is
small enough but can still work somehow.(CVE-2024-38618)
In the Linux kernel, the following vulnerability has been resolved:
usb-storage: alauda: Check whether the media is initialized
The member &quot;uzonesize&quot; of struct alauda_info will remain 0
if alauda_init_media() fails, potentially causing divide errors
in alauda_read_data() and alauda_write_lba().
- Add a member &quot;media_initialized&quot; to struct alauda_info.
- Change a condition in alauda_check_media() to ensure the
first initialization.
- Add an error check for the return value of alauda_init_media().(CVE-2024-38619)
In the Linux kernel, the following vulnerability has been resolved:
9p: add missing locking around taking dentry fid list
Fix a use-after-free on dentry&apos;s d_fsdata fid list when a thread
looks up a fid through dentry while another thread unlinks it:
UAF thread:
refcount_t: addition on 0; use-after-free.
p9_fid_get linux/./include/net/9p/client.h:262
v9fs_fid_find+0x236/0x280 linux/fs/9p/fid.c:129
v9fs_fid_lookup_with_uid linux/fs/9p/fid.c:181
v9fs_fid_lookup+0xbf/0xc20 linux/fs/9p/fid.c:314
v9fs_vfs_getattr_dotl+0xf9/0x360 linux/fs/9p/vfs_inode_dotl.c:400
vfs_statx+0xdd/0x4d0 linux/fs/stat.c:248
Freed by:
p9_fid_destroy (inlined)
p9_client_clunk+0xb0/0xe0 linux/net/9p/client.c:1456
p9_fid_put linux/./include/net/9p/client.h:278
v9fs_dentry_release+0xb5/0x140 linux/fs/9p/vfs_dentry.c:55
v9fs_remove+0x38f/0x620 linux/fs/9p/vfs_inode.c:518
vfs_unlink+0x29a/0x810 linux/fs/namei.c:4335
The problem is that d_fsdata was not accessed under d_lock, because
d_release() normally is only called once the dentry is otherwise no
longer accessible but since we also call it explicitly in v9fs_remove
that lock is required:
move the hlist out of the dentry under lock then unref its fids once
they are no longer accessible.(CVE-2024-39463)
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix nilfs_empty_dir() misjudgment and long loop on I/O errors
The error handling in nilfs_empty_dir() when a directory folio/page read
fails is incorrect, as in the old ext2 implementation, and if the
folio/page cannot be read or nilfs_check_folio() fails, it will falsely
determine the directory as empty and corrupt the file system.
In addition, since nilfs_empty_dir() does not immediately return on a
failed folio/page read, but continues to loop, this can cause a long loop
with I/O if i_size of the directory&apos;s inode is also corrupted, causing the
log writer thread to wait and hang, as reported by syzbot.
Fix these issues by making nilfs_empty_dir() immediately return a false
value (0) if it fails to get a directory folio/page.(CVE-2024-39469)
In the Linux kernel, the following vulnerability has been resolved:
xfs: fix log recovery buffer allocation for the legacy h_size fixup
Commit a70f9fe52daa (&quot;xfs: detect and handle invalid iclog size set by
mkfs&quot;) added a fixup for incorrect h_size values used for the initial
umount record in old xfsprogs versions. Later commit 0c771b99d6c9
(&quot;xfs: clean up calculation of LR header blocks&quot;) cleaned up the log
reover buffer calculation, but stoped using the fixed up h_size value
to size the log recovery buffer, which can lead to an out of bounds
access when the incorrect h_size does not come from the old mkfs
tool, but a fuzzer.
Fix this by open coding xlog_logrec_hblks and taking the fixed h_size
into account for this calculation.(CVE-2024-39472)
In the Linux kernel, the following vulnerability has been resolved:
media: v4l: async: Properly re-initialise notifier entry in unregister
The notifier_entry of a notifier is not re-initialised after unregistering
the notifier. This leads to dangling pointers being left there so use
list_del_init() to return the notifier_entry an empty list.(CVE-2024-39485)
In the Linux kernel, the following vulnerability has been resolved:
ima: Fix use-after-free on a dentry&apos;s dname.name
-&gt;d_name.name can change on rename and the earlier value can be freed;
there are conditions sufficient to stabilize it (-&gt;d_lock on dentry,
-&gt;d_lock on its parent, -&gt;i_rwsem exclusive on the parent&apos;s inode,
rename_lock), but none of those are met at any of the sites. Take a stable
snapshot of the name instead.(CVE-2024-39494)
In the Linux kernel, the following vulnerability has been resolved:
vmci: prevent speculation leaks by sanitizing event in event_deliver()
Coverity spotted that event_msg is controlled by user-space,
event_msg-&gt;event_data.event is passed to event_deliver() and used
as an index without sanitization.
This change ensures that the event index is sanitized to mitigate any
possibility of speculative information leaks.
This bug was discovered and resolved using Coverity Static Analysis
Security Testing (SAST) by Synopsys, Inc.
Only compile tested, no access to HW.(CVE-2024-39499)
In the Linux kernel, the following vulnerability has been resolved:
drm/komeda: check for error-valued pointer
komeda_pipeline_get_state() may return an error-valued pointer, thus
check the pointer for negative or null value before dereferencing.(CVE-2024-39505)
In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: Fix deadlock in ieee80211_sta_ps_deliver_wakeup()
The ieee80211_sta_ps_deliver_wakeup() function takes sta-&gt;ps_lock to
synchronizes with ieee80211_tx_h_unicast_ps_buf() which is called from
softirq context. However using only spin_lock() to get sta-&gt;ps_lock in
ieee80211_sta_ps_deliver_wakeup() does not prevent softirq to execute
on this same CPU, to run ieee80211_tx_h_unicast_ps_buf() and try to
take this same lock ending in deadlock. Below is an example of rcu stall
that arises in such situation.
rcu: INFO: rcu_sched self-detected stall on CPU
rcu: 2-....: (42413413 ticks this GP) idle=b154/1/0x4000000000000000 softirq=1763/1765 fqs=21206996
rcu: (t=42586894 jiffies g=2057 q=362405 ncpus=4)
CPU: 2 PID: 719 Comm: wpa_supplicant Tainted: G W 6.4.0-02158-g1b062f552873 #742
Hardware name: RPT (r1) (DT)
pstate: 00000005 (nzcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : queued_spin_lock_slowpath+0x58/0x2d0
lr : invoke_tx_handlers_early+0x5b4/0x5c0
sp : ffff00001ef64660
x29: ffff00001ef64660 x28: ffff000009bc1070 x27: ffff000009bc0ad8
x26: ffff000009bc0900 x25: ffff00001ef647a8 x24: 0000000000000000
x23: ffff000009bc0900 x22: ffff000009bc0900 x21: ffff00000ac0e000
x20: ffff00000a279e00 x19: ffff00001ef646e8 x18: 0000000000000000
x17: ffff800016468000 x16: ffff00001ef608c0 x15: 0010533c93f64f80
x14: 0010395c9faa3946 x13: 0000000000000000 x12: 00000000fa83b2da
x11: 000000012edeceea x10: ffff0000010fbe00 x9 : 0000000000895440
x8 : 000000000010533c x7 : ffff00000ad8b740 x6 : ffff00000c350880
x5 : 0000000000000007 x4 : 0000000000000001 x3 : 0000000000000000
x2 : 0000000000000000 x1 : 0000000000000001 x0 : ffff00000ac0e0e8
Call trace:
queued_spin_lock_slowpath+0x58/0x2d0
ieee80211_tx+0x80/0x12c
ieee80211_tx_pending+0x110/0x278
tasklet_action_common.constprop.0+0x10c/0x144
tasklet_action+0x20/0x28
_stext+0x11c/0x284
____do_softirq+0xc/0x14
call_on_irq_stack+0x24/0x34
do_softirq_own_stack+0x18/0x20
do_softirq+0x74/0x7c
__local_bh_enable_ip+0xa0/0xa4
_ieee80211_wake_txqs+0x3b0/0x4b8
__ieee80211_wake_queue+0x12c/0x168
ieee80211_add_pending_skbs+0xec/0x138
ieee80211_sta_ps_deliver_wakeup+0x2a4/0x480
ieee80211_mps_sta_status_update.part.0+0xd8/0x11c
ieee80211_mps_sta_status_update+0x18/0x24
sta_apply_parameters+0x3bc/0x4c0
ieee80211_change_station+0x1b8/0x2dc
nl80211_set_station+0x444/0x49c
genl_family_rcv_msg_doit.isra.0+0xa4/0xfc
genl_rcv_msg+0x1b0/0x244
netlink_rcv_skb+0x38/0x10c
genl_rcv+0x34/0x48
netlink_unicast+0x254/0x2bc
netlink_sendmsg+0x190/0x3b4
____sys_sendmsg+0x1e8/0x218
___sys_sendmsg+0x68/0x8c
__sys_sendmsg+0x44/0x84
__arm64_sys_sendmsg+0x20/0x28
do_el0_svc+0x6c/0xe8
el0_svc+0x14/0x48
el0t_64_sync_handler+0xb0/0xb4
el0t_64_sync+0x14c/0x150
Using spin_lock_bh()/spin_unlock_bh() instead prevents softirq to raise
on the same CPU that is holding the lock.(CVE-2024-40912)
In the Linux kernel, the following vulnerability has been resolved:
drm/exynos: hdmi: report safe 640x480 mode as a fallback when no EDID found
When reading EDID fails and driver reports no modes available, the DRM
core adds an artificial 1024x786 mode to the connector. Unfortunately
some variants of the Exynos HDMI (like the one in Exynos4 SoCs) are not
able to drive such mode, so report a safe 640x480 mode instead of nothing
in case of the EDID reading failure.
This fixes the following issue observed on Trats2 board since commit
13d5b040363c (&quot;drm/exynos: do not return negative values from .get_modes()&quot;):
[drm] Exynos DRM: using 11c00000.fimd device for DMA mapping operations
exynos-drm exynos-drm: bound 11c00000.fimd (ops fimd_component_ops)
exynos-drm exynos-drm: bound 12c10000.mixer (ops mixer_component_ops)
exynos-dsi 11c80000.dsi: [drm:samsung_dsim_host_attach] Attached s6e8aa0 device (lanes:4 bpp:24 mode-flags:0x10b)
exynos-drm exynos-drm: bound 11c80000.dsi (ops exynos_dsi_component_ops)
exynos-drm exynos-drm: bound 12d00000.hdmi (ops hdmi_component_ops)
[drm] Initialized exynos 1.1.0 20180330 for exynos-drm on minor 1
exynos-hdmi 12d00000.hdmi: [drm:hdmiphy_enable.part.0] *ERROR* PLL could not reach steady state
panel-samsung-s6e8aa0 11c80000.dsi.0: ID: 0xa2, 0x20, 0x8c
exynos-mixer 12c10000.mixer: timeout waiting for VSYNC
------------[ cut here ]------------
WARNING: CPU: 1 PID: 11 at drivers/gpu/drm/drm_atomic_helper.c:1682 drm_atomic_helper_wait_for_vblanks.part.0+0x2b0/0x2b8
[CRTC:70:crtc-1] vblank wait timed out
Modules linked in:
CPU: 1 PID: 11 Comm: kworker/u16:0 Not tainted 6.9.0-rc5-next-20240424 #14913
Hardware name: Samsung Exynos (Flattened Device Tree)
Workqueue: events_unbound deferred_probe_work_func
Call trace:
unwind_backtrace from show_stack+0x10/0x14
show_stack from dump_stack_lvl+0x68/0x88
dump_stack_lvl from __warn+0x7c/0x1c4
__warn from warn_slowpath_fmt+0x11c/0x1a8
warn_slowpath_fmt from drm_atomic_helper_wait_for_vblanks.part.0+0x2b0/0x2b8
drm_atomic_helper_wait_for_vblanks.part.0 from drm_atomic_helper_commit_tail_rpm+0x7c/0x8c
drm_atomic_helper_commit_tail_rpm from commit_tail+0x9c/0x184
commit_tail from drm_atomic_helper_commit+0x168/0x190
drm_atomic_helper_commit from drm_atomic_commit+0xb4/0xe0
drm_atomic_commit from drm_client_modeset_commit_atomic+0x23c/0x27c
drm_client_modeset_commit_atomic from drm_client_modeset_commit_locked+0x60/0x1cc
drm_client_modeset_commit_locked from drm_client_modeset_commit+0x24/0x40
drm_client_modeset_commit from __drm_fb_helper_restore_fbdev_mode_unlocked+0x9c/0xc4
__drm_fb_helper_restore_fbdev_mode_unlocked from drm_fb_helper_set_par+0x2c/0x3c
drm_fb_helper_set_par from fbcon_init+0x3d8/0x550
fbcon_init from visual_init+0xc0/0x108
visual_init from do_bind_con_driver+0x1b8/0x3a4
do_bind_con_driver from do_take_over_console+0x140/0x1ec
do_take_over_console from do_fbcon_takeover+0x70/0xd0
do_fbcon_takeover from fbcon_fb_registered+0x19c/0x1ac
fbcon_fb_registered from register_framebuffer+0x190/0x21c
register_framebuffer from __drm_fb_helper_initial_config_and_unlock+0x350/0x574
__drm_fb_helper_initial_config_and_unlock from exynos_drm_fbdev_client_hotplug+0x6c/0xb0
exynos_drm_fbdev_client_hotplug from drm_client_register+0x58/0x94
drm_client_register from exynos_drm_bind+0x160/0x190
exynos_drm_bind from try_to_bring_up_aggregate_device+0x200/0x2d8
try_to_bring_up_aggregate_device from __component_add+0xb0/0x170
__component_add from mixer_probe+0x74/0xcc
mixer_probe from platform_probe+0x5c/0xb8
platform_probe from really_probe+0xe0/0x3d8
really_probe from __driver_probe_device+0x9c/0x1e4
__driver_probe_device from driver_probe_device+0x30/0xc0
driver_probe_device from __device_attach_driver+0xa8/0x120
__device_attach_driver from bus_for_each_drv+0x80/0xcc
bus_for_each_drv from __device_attach+0xac/0x1fc
__device_attach from bus_probe_device+0x8c/0x90
bus_probe_device from deferred_probe_work_func+0
---truncated---(CVE-2024-40916)
In the Linux kernel, the following vulnerability has been resolved: parisc: Try to fix random segmentation faults in package builds PA-RISC systems with PA8800 and PA8900 processors have had problems with random segmentation faults for many years. Systems with earlier processors are much more stable. Systems with PA8800 and PA8900 processors have a large L2 cache which needs per page flushing for decent performance when a large range is flushed. The combined cache in these systems is also more sensitive to non-equivalent aliases than the caches in earlier systems. The majority of random segmentation faults that I have looked at appear to be memory corruption in memory allocated using mmap and malloc. My first attempt at fixing the random faults didn&apos;t work. On reviewing the cache code, I realized that there were two issues which the existing code didn&apos;t handle correctly. Both relate to cache move-in. Another issue is that the present bit in PTEs is racy. 1) PA-RISC caches have a mind of their own and they can speculatively load data and instructions for a page as long as there is a entry in the TLB for the page which allows move-in. TLBs are local to each CPU. Thus, the TLB entry for a page must be purged before flushing the page. This is particularly important on SMP systems. In some of the flush routines, the flush routine would be called and then the TLB entry would be purged. This was because the flush routine needed the TLB entry to do the flush. 2) My initial approach to trying the fix the random faults was to try and use flush_cache_page_if_present for all flush operations. This actually made things worse and led to a couple of hardware lockups. It finally dawned on me that some lines weren&apos;t being flushed because the pte check code was racy. This resulted in random inequivalent mappings to physical pages. The __flush_cache_page tmpalias flush sets up its own TLB entry and it doesn&apos;t need the existing TLB entry. As long as we can find the pte pointer for the vm page, we can get the pfn and physical address of the page. We can also purge the TLB entry for the page before doing the flush. Further, __flush_cache_page uses a special TLB entry that inhibits cache move-in. When switching page mappings, we need to ensure that lines are removed from the cache. It is not sufficient to just flush the lines to memory as they may come back. This made it clear that we needed to implement all the required flush operations using tmpalias routines. This includes flushes for user and kernel pages. After modifying the code to use tmpalias flushes, it became clear that the random segmentation faults were not fully resolved. The frequency of faults was worse on systems with a 64 MB L2 (PA8900) and systems with more CPUs (rp4440). The warning that I added to flush_cache_page_if_present to detect pages that couldn&apos;t be flushed triggered frequently on some systems. Helge and I looked at the pages that couldn&apos;t be flushed and found that the PTE was either cleared or for a swap page. Ignoring pages that were swapped out seemed okay but pages with cleared PTEs seemed problematic. I looked at routines related to pte_clear and noticed ptep_clear_flush. The default implementation just flushes the TLB entry. However, it was obvious that on parisc we need to flush the cache page as well. If we don&apos;t flush the cache page, stale lines will be left in the cache and cause random corruption. Once a PTE is cleared, there is no way to find the physical address associated with the PTE and flush the associated page at a later time. I implemented an updated change with a parisc specific version of ptep_clear_flush. It fixed the random data corruption on Helge&apos;s rp4440 and rp3440, as well as on my c8000. At this point, I realized that I could restore the code where we only flush in flush_cache_page_if_present if the page has been accessed. However, for this, we also need to flush the cache when the accessed bit is cleared in ---truncated---(CVE-2024-40918)
In the Linux kernel, the following vulnerability has been resolved:
vmxnet3: disable rx data ring on dma allocation failure
When vmxnet3_rq_create() fails to allocate memory for rq-&gt;data_ring.base,
the subsequent call to vmxnet3_rq_destroy_all_rxdataring does not reset
rq-&gt;data_ring.desc_size for the data ring that failed, which presumably
causes the hypervisor to reference it on packet reception.
To fix this bug, rq-&gt;data_ring.desc_size needs to be set to 0 to tell
the hypervisor to disable this feature.
[ 95.436876] kernel BUG at net/core/skbuff.c:207!
[ 95.439074] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
[ 95.440411] CPU: 7 PID: 0 Comm: swapper/7 Not tainted 6.9.3-dirty #1
[ 95.441558] Hardware name: VMware, Inc. VMware Virtual
Platform/440BX Desktop Reference Platform, BIOS 6.00 12/12/2018
[ 95.443481] RIP: 0010:skb_panic+0x4d/0x4f
[ 95.444404] Code: 4f 70 50 8b 87 c0 00 00 00 50 8b 87 bc 00 00 00 50
ff b7 d0 00 00 00 4c 8b 8f c8 00 00 00 48 c7 c7 68 e8 be 9f e8 63 58 f9
ff &lt;0f&gt; 0b 48 8b 14 24 48 c7 c1 d0 73 65 9f e8 a1 ff ff ff 48 8b 14 24
[ 95.447684] RSP: 0018:ffffa13340274dd0 EFLAGS: 00010246
[ 95.448762] RAX: 0000000000000089 RBX: ffff8fbbc72b02d0 RCX: 000000000000083f
[ 95.450148] RDX: 0000000000000000 RSI: 00000000000000f6 RDI: 000000000000083f
[ 95.451520] RBP: 000000000000002d R08: 0000000000000000 R09: ffffa13340274c60
[ 95.452886] R10: ffffffffa04ed468 R11: 0000000000000002 R12: 0000000000000000
[ 95.454293] R13: ffff8fbbdab3c2d0 R14: ffff8fbbdbd829e0 R15: ffff8fbbdbd809e0
[ 95.455682] FS: 0000000000000000(0000) GS:ffff8fbeefd80000(0000) knlGS:0000000000000000
[ 95.457178] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 95.458340] CR2: 00007fd0d1f650c8 CR3: 0000000115f28000 CR4: 00000000000406f0
[ 95.459791] Call Trace:
[ 95.460515] &lt;IRQ&gt;
[ 95.461180] ? __die_body.cold+0x19/0x27
[ 95.462150] ? die+0x2e/0x50
[ 95.462976] ? do_trap+0xca/0x110
[ 95.463973] ? do_error_trap+0x6a/0x90
[ 95.464966] ? skb_panic+0x4d/0x4f
[ 95.465901] ? exc_invalid_op+0x50/0x70
[ 95.466849] ? skb_panic+0x4d/0x4f
[ 95.467718] ? asm_exc_invalid_op+0x1a/0x20
[ 95.468758] ? skb_panic+0x4d/0x4f
[ 95.469655] skb_put.cold+0x10/0x10
[ 95.470573] vmxnet3_rq_rx_complete+0x862/0x11e0 [vmxnet3]
[ 95.471853] vmxnet3_poll_rx_only+0x36/0xb0 [vmxnet3]
[ 95.473185] __napi_poll+0x2b/0x160
[ 95.474145] net_rx_action+0x2c6/0x3b0
[ 95.475115] handle_softirqs+0xe7/0x2a0
[ 95.476122] __irq_exit_rcu+0x97/0xb0
[ 95.477109] common_interrupt+0x85/0xa0
[ 95.478102] &lt;/IRQ&gt;
[ 95.478846] &lt;TASK&gt;
[ 95.479603] asm_common_interrupt+0x26/0x40
[ 95.480657] RIP: 0010:pv_native_safe_halt+0xf/0x20
[ 95.481801] Code: 22 d7 e9 54 87 01 00 0f 1f 40 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa eb 07 0f 00 2d 93 ba 3b 00 fb f4 &lt;e9&gt; 2c 87 01 00 66 66 2e 0f 1f 84 00 00 00 00 00 90 90 90 90 90 90
[ 95.485563] RSP: 0018:ffffa133400ffe58 EFLAGS: 00000246
[ 95.486882] RAX: 0000000000004000 RBX: ffff8fbbc1d14064 RCX: 0000000000000000
[ 95.488477] RDX: ffff8fbeefd80000 RSI: ffff8fbbc1d14000 RDI: 0000000000000001
[ 95.490067] RBP: ffff8fbbc1d14064 R08: ffffffffa0652260 R09: 00000000000010d3
[ 95.491683] R10: 0000000000000018 R11: ffff8fbeefdb4764 R12: ffffffffa0652260
[ 95.493389] R13: ffffffffa06522e0 R14: 0000000000000001 R15: 0000000000000000
[ 95.495035] acpi_safe_halt+0x14/0x20
[ 95.496127] acpi_idle_do_entry+0x2f/0x50
[ 95.497221] acpi_idle_enter+0x7f/0xd0
[ 95.498272] cpuidle_enter_state+0x81/0x420
[ 95.499375] cpuidle_enter+0x2d/0x40
[ 95.500400] do_idle+0x1e5/0x240
[ 95.501385] cpu_startup_entry+0x29/0x30
[ 95.502422] start_secondary+0x11c/0x140
[ 95.503454] common_startup_64+0x13e/0x141
[ 95.504466] &lt;/TASK&gt;
[ 95.505197] Modules linked in: nft_fib_inet nft_fib_ipv4
nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6
nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ip
---truncated---(CVE-2024-40923)
In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mvm: check n_ssids before accessing the ssids
In some versions of cfg80211, the ssids poinet might be a valid one even
though n_ssids is 0. Accessing the pointer in this case will cuase an
out-of-bound access. Fix this by checking n_ssids first.(CVE-2024-40929)
In the Linux kernel, the following vulnerability has been resolved:
drm/exynos/vidi: fix memory leak in .get_modes()
The duplicated EDID is never freed. Fix it.(CVE-2024-40932)
In the Linux kernel, the following vulnerability has been resolved:
cxl/region: Fix memregion leaks in devm_cxl_add_region()
Move the mode verification to __create_region() before allocating the
memregion to avoid the memregion leaks.(CVE-2024-40936)
In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mvm: don&apos;t read past the mfuart notifcation
In case the firmware sends a notification that claims it has more data
than it has, we will read past that was allocated for the notification.
Remove the print of the buffer, we won&apos;t see it by default. If needed,
we can see the content with tracing.
This was reported by KFENCE.(CVE-2024-40941)
In the Linux kernel, the following vulnerability has been resolved:
ocfs2: fix races between hole punching and AIO+DIO
After commit &quot;ocfs2: return real error code in ocfs2_dio_wr_get_block&quot;,
fstests/generic/300 become from always failed to sometimes failed:
========================================================================
[ 473.293420 ] run fstests generic/300
[ 475.296983 ] JBD2: Ignoring recovery information on journal
[ 475.302473 ] ocfs2: Mounting device (253,1) on (node local, slot 0) with ordered data mode.
[ 494.290998 ] OCFS2: ERROR (device dm-1): ocfs2_change_extent_flag: Owner 5668 has an extent at cpos 78723 which can no longer be found
[ 494.291609 ] On-disk corruption discovered. Please run fsck.ocfs2 once the filesystem is unmounted.
[ 494.292018 ] OCFS2: File system is now read-only.
[ 494.292224 ] (kworker/19:11,2628,19):ocfs2_mark_extent_written:5272 ERROR: status = -30
[ 494.292602 ] (kworker/19:11,2628,19):ocfs2_dio_end_io_write:2374 ERROR: status = -3
fio: io_u error on file /mnt/scratch/racer: Read-only file system: write offset=460849152, buflen=131072
=========================================================================
In __blockdev_direct_IO, ocfs2_dio_wr_get_block is called to add unwritten
extents to a list. extents are also inserted into extent tree in
ocfs2_write_begin_nolock. Then another thread call fallocate to puch a
hole at one of the unwritten extent. The extent at cpos was removed by
ocfs2_remove_extent(). At end io worker thread, ocfs2_search_extent_list
found there is no such extent at the cpos.
T1 T2 T3
inode lock
...
insert extents
...
inode unlock
ocfs2_fallocate
__ocfs2_change_file_space
inode lock
lock ip_alloc_sem
ocfs2_remove_inode_range inode
ocfs2_remove_btree_range
ocfs2_remove_extent
^---remove the extent at cpos 78723
...
unlock ip_alloc_sem
inode unlock
ocfs2_dio_end_io
ocfs2_dio_end_io_write
lock ip_alloc_sem
ocfs2_mark_extent_written
ocfs2_change_extent_flag
ocfs2_search_extent_list
^---failed to find extent
...
unlock ip_alloc_sem
In most filesystems, fallocate is not compatible with racing with AIO+DIO,
so fix it by adding to wait for all dio before fallocate/punch_hole like
ext4.(CVE-2024-40943)
In the Linux kernel, the following vulnerability has been resolved:
ocfs2: fix NULL pointer dereference in ocfs2_abort_trigger()
bdev-&gt;bd_super has been removed and commit 8887b94d9322 change the usage
from bdev-&gt;bd_super to b_assoc_map-&gt;host-&gt;i_sb. Since ocfs2 hasn&apos;t set
bh-&gt;b_assoc_map, it will trigger NULL pointer dereference when calling
into ocfs2_abort_trigger().
Actually this was pointed out in history, see commit 74e364ad1b13. But
I&apos;ve made a mistake when reviewing commit 8887b94d9322 and then
re-introduce this regression.
Since we cannot revive bdev in buffer head, so fix this issue by
initializing all types of ocfs2 triggers when fill super, and then get the
specific ocfs2 trigger from ocfs2_caching_info when access journal.
[joseph.qi@linux.alibaba.com: v2]
Link: https://lkml.kernel.org/r/20240602112045.1112708-1-joseph.qi@linux.alibaba.com(CVE-2024-40951)
In the Linux kernel, the following vulnerability has been resolved:
ocfs2: fix NULL pointer dereference in ocfs2_journal_dirty()
bdev-&gt;bd_super has been removed and commit 8887b94d9322 change the usage
from bdev-&gt;bd_super to b_assoc_map-&gt;host-&gt;i_sb. This introduces the
following NULL pointer dereference in ocfs2_journal_dirty() since
b_assoc_map is still not initialized. This can be easily reproduced by
running xfstests generic/186, which simulate no more credits.
[ 134.351592] BUG: kernel NULL pointer dereference, address: 0000000000000000
...
[ 134.355341] RIP: 0010:ocfs2_journal_dirty+0x14f/0x160 [ocfs2]
...
[ 134.365071] Call Trace:
[ 134.365312] &lt;TASK&gt;
[ 134.365524] ? __die_body+0x1e/0x60
[ 134.365868] ? page_fault_oops+0x13d/0x4f0
[ 134.366265] ? __pfx_bit_wait_io+0x10/0x10
[ 134.366659] ? schedule+0x27/0xb0
[ 134.366981] ? exc_page_fault+0x6a/0x140
[ 134.367356] ? asm_exc_page_fault+0x26/0x30
[ 134.367762] ? ocfs2_journal_dirty+0x14f/0x160 [ocfs2]
[ 134.368305] ? ocfs2_journal_dirty+0x13d/0x160 [ocfs2]
[ 134.368837] ocfs2_create_new_meta_bhs.isra.51+0x139/0x2e0 [ocfs2]
[ 134.369454] ocfs2_grow_tree+0x688/0x8a0 [ocfs2]
[ 134.369927] ocfs2_split_and_insert.isra.67+0x35c/0x4a0 [ocfs2]
[ 134.370521] ocfs2_split_extent+0x314/0x4d0 [ocfs2]
[ 134.371019] ocfs2_change_extent_flag+0x174/0x410 [ocfs2]
[ 134.371566] ocfs2_add_refcount_flag+0x3fa/0x630 [ocfs2]
[ 134.372117] ocfs2_reflink_remap_extent+0x21b/0x4c0 [ocfs2]
[ 134.372994] ? inode_update_timestamps+0x4a/0x120
[ 134.373692] ? __pfx_ocfs2_journal_access_di+0x10/0x10 [ocfs2]
[ 134.374545] ? __pfx_ocfs2_journal_access_di+0x10/0x10 [ocfs2]
[ 134.375393] ocfs2_reflink_remap_blocks+0xe4/0x4e0 [ocfs2]
[ 134.376197] ocfs2_remap_file_range+0x1de/0x390 [ocfs2]
[ 134.376971] ? security_file_permission+0x29/0x50
[ 134.377644] vfs_clone_file_range+0xfe/0x320
[ 134.378268] ioctl_file_clone+0x45/0xa0
[ 134.378853] do_vfs_ioctl+0x457/0x990
[ 134.379422] __x64_sys_ioctl+0x6e/0xd0
[ 134.379987] do_syscall_64+0x5d/0x170
[ 134.380550] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[ 134.381231] RIP: 0033:0x7fa4926397cb
[ 134.381786] Code: 73 01 c3 48 8b 0d bd 56 38 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa b8 10 00 00 00 0f 05 &lt;48&gt; 3d 01 f0 ff ff 73 01 c3 48 8b 0d 8d 56 38 00 f7 d8 64 89 01 48
[ 134.383930] RSP: 002b:00007ffc2b39f7b8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
[ 134.384854] RAX: ffffffffffffffda RBX: 0000000000000004 RCX: 00007fa4926397cb
[ 134.385734] RDX: 00007ffc2b39f7f0 RSI: 000000004020940d RDI: 0000000000000003
[ 134.386606] RBP: 0000000000000000 R08: 00111a82a4f015bb R09: 00007fa494221000
[ 134.387476] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
[ 134.388342] R13: 0000000000f10000 R14: 0000558e844e2ac8 R15: 0000000000f10000
[ 134.389207] &lt;/TASK&gt;
Fix it by only aborting transaction and journal in ocfs2_journal_dirty()
now, and leave ocfs2_abort() later when detecting an aborted handle,
e.g. start next transaction. Also log the handle details in this case.(CVE-2024-40952)
In the Linux kernel, the following vulnerability has been resolved:
seg6: fix parameter passing when calling NF_HOOK() in End.DX4 and End.DX6 behaviors
input_action_end_dx4() and input_action_end_dx6() are called NF_HOOK() for
PREROUTING hook, in PREROUTING hook, we should passing a valid indev,
and a NULL outdev to NF_HOOK(), otherwise may trigger a NULL pointer
dereference, as below:
[74830.647293] BUG: kernel NULL pointer dereference, address: 0000000000000090
[74830.655633] #PF: supervisor read access in kernel mode
[74830.657888] #PF: error_code(0x0000) - not-present page
[74830.659500] PGD 0 P4D 0
[74830.660450] Oops: 0000 [#1] PREEMPT SMP PTI
...
[74830.664953] Hardware name: Red Hat KVM, BIOS 0.5.1 01/01/2011
[74830.666569] RIP: 0010:rpfilter_mt+0x44/0x15e [ipt_rpfilter]
...
[74830.689725] Call Trace:
[74830.690402] &lt;IRQ&gt;
[74830.690953] ? show_trace_log_lvl+0x1c4/0x2df
[74830.692020] ? show_trace_log_lvl+0x1c4/0x2df
[74830.693095] ? ipt_do_table+0x286/0x710 [ip_tables]
[74830.694275] ? __die_body.cold+0x8/0xd
[74830.695205] ? page_fault_oops+0xac/0x140
[74830.696244] ? exc_page_fault+0x62/0x150
[74830.697225] ? asm_exc_page_fault+0x22/0x30
[74830.698344] ? rpfilter_mt+0x44/0x15e [ipt_rpfilter]
[74830.699540] ipt_do_table+0x286/0x710 [ip_tables]
[74830.700758] ? ip6_route_input+0x19d/0x240
[74830.701752] nf_hook_slow+0x3f/0xb0
[74830.702678] input_action_end_dx4+0x19b/0x1e0
[74830.703735] ? input_action_end_t+0xe0/0xe0
[74830.704734] seg6_local_input_core+0x2d/0x60
[74830.705782] lwtunnel_input+0x5b/0xb0
[74830.706690] __netif_receive_skb_one_core+0x63/0xa0
[74830.707825] process_backlog+0x99/0x140
[74830.709538] __napi_poll+0x2c/0x160
[74830.710673] net_rx_action+0x296/0x350
[74830.711860] __do_softirq+0xcb/0x2ac
[74830.713049] do_softirq+0x63/0x90
input_action_end_dx4() passing a NULL indev to NF_HOOK(), and finally
trigger a NULL dereference in rpfilter_mt()-&gt;rpfilter_is_loopback():
static bool
rpfilter_is_loopback(const struct sk_buff *skb,
const struct net_device *in)
{
// in is NULL
return skb-&gt;pkt_type == PACKET_LOOPBACK ||
in-&gt;flags &amp; IFF_LOOPBACK;
}(CVE-2024-40957)
In the Linux kernel, the following vulnerability has been resolved:
MIPS: Octeon: Add PCIe link status check
The standard PCIe configuration read-write interface is used to
access the configuration space of the peripheral PCIe devices
of the mips processor after the PCIe link surprise down, it can
generate kernel panic caused by &quot;Data bus error&quot;. So it is
necessary to add PCIe link status check for system protection.
When the PCIe link is down or in training, assigning a value
of 0 to the configuration address can prevent read-write behavior
to the configuration space of peripheral PCIe devices, thereby
preventing kernel panic.(CVE-2024-40968)
In the Linux kernel, the following vulnerability has been resolved:
powerpc/pseries: Enforce hcall result buffer validity and size
plpar_hcall(), plpar_hcall9(), and related functions expect callers to
provide valid result buffers of certain minimum size. Currently this
is communicated only through comments in the code and the compiler has
no idea.
For example, if I write a bug like this:
long retbuf[PLPAR_HCALL_BUFSIZE]; // should be PLPAR_HCALL9_BUFSIZE
plpar_hcall9(H_ALLOCATE_VAS_WINDOW, retbuf, ...);
This compiles with no diagnostics emitted, but likely results in stack
corruption at runtime when plpar_hcall9() stores results past the end
of the array. (To be clear this is a contrived example and I have not
found a real instance yet.)
To make this class of error less likely, we can use explicitly-sized
array parameters instead of pointers in the declarations for the hcall
APIs. When compiled with -Warray-bounds[1], the code above now
provokes a diagnostic like this:
error: array argument is too small;
is of size 32, callee requires at least 72 [-Werror,-Warray-bounds]
60 | plpar_hcall9(H_ALLOCATE_VAS_WINDOW, retbuf,
| ^ ~~~~~~
[1] Enabled for LLVM builds but not GCC for now. See commit
0da6e5fd6c37 (&quot;gcc: disable &apos;-Warray-bounds&apos; for gcc-13 too&quot;) and
related changes.(CVE-2024-40974)
In the Linux kernel, the following vulnerability has been resolved:
platform/x86: x86-android-tablets: Unregister devices in reverse order
Not all subsystems support a device getting removed while there are
still consumers of the device with a reference to the device.
One example of this is the regulator subsystem. If a regulator gets
unregistered while there are still drivers holding a reference
a WARN() at drivers/regulator/core.c:5829 triggers, e.g.:
WARNING: CPU: 1 PID: 1587 at drivers/regulator/core.c:5829 regulator_unregister
Hardware name: Intel Corp. VALLEYVIEW C0 PLATFORM/BYT-T FFD8, BIOS BLADE_21.X64.0005.R00.1504101516 FFD8_X64_R_2015_04_10_1516 04/10/2015
RIP: 0010:regulator_unregister
Call Trace:
&lt;TASK&gt;
regulator_unregister
devres_release_group
i2c_device_remove
device_release_driver_internal
bus_remove_device
device_del
device_unregister
x86_android_tablet_remove
On the Lenovo Yoga Tablet 2 series the bq24190 charger chip also provides
a 5V boost converter output for powering USB devices connected to the micro
USB port, the bq24190-charger driver exports this as a Vbus regulator.
On the 830 (8&quot;) and 1050 (&quot;10&quot;) models this regulator is controlled by
a platform_device and x86_android_tablet_remove() removes platform_device-s
before i2c_clients so the consumer gets removed first.
But on the 1380 (13&quot;) model there is a lc824206xa micro-USB switch
connected over I2C and the extcon driver for that controls the regulator.
The bq24190 i2c-client *must* be registered first, because that creates
the regulator with the lc824206xa listed as its consumer. If the regulator
has not been registered yet the lc824206xa driver will end up getting
a dummy regulator.
Since in this case both the regulator provider and consumer are I2C
devices, the only way to ensure that the consumer is unregistered first
is to unregister the I2C devices in reverse order of in which they were
created.
For consistency and to avoid similar problems in the future change
x86_android_tablet_remove() to unregister all device types in reverse
order.(CVE-2024-40975)
In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7921s: fix potential hung tasks during chip recovery
During chip recovery (e.g. chip reset), there is a possible situation that
kernel worker reset_work is holding the lock and waiting for kernel thread
stat_worker to be parked, while stat_worker is waiting for the release of
the same lock.
It causes a deadlock resulting in the dumping of hung tasks messages and
possible rebooting of the device.
This patch prevents the execution of stat_worker during the chip recovery.(CVE-2024-40977)
In the Linux kernel, the following vulnerability has been resolved:
tipc: force a dst refcount before doing decryption
As it says in commit 3bc07321ccc2 (&quot;xfrm: Force a dst refcount before
entering the xfrm type handlers&quot;):
&quot;Crypto requests might return asynchronous. In this case we leave the
rcu protected region, so force a refcount on the skb&apos;s destination
entry before we enter the xfrm type input/output handlers.&quot;
On TIPC decryption path it has the same problem, and skb_dst_force()
should be called before doing decryption to avoid a possible crash.
Shuang reported this issue when this warning is triggered:
[] WARNING: include/net/dst.h:337 tipc_sk_rcv+0x1055/0x1ea0 [tipc]
[] Kdump: loaded Tainted: G W --------- - - 4.18.0-496.el8.x86_64+debug
[] Workqueue: crypto cryptd_queue_worker
[] RIP: 0010:tipc_sk_rcv+0x1055/0x1ea0 [tipc]
[] Call Trace:
[] tipc_sk_mcast_rcv+0x548/0xea0 [tipc]
[] tipc_rcv+0xcf5/0x1060 [tipc]
[] tipc_aead_decrypt_done+0x215/0x2e0 [tipc]
[] cryptd_aead_crypt+0xdb/0x190
[] cryptd_queue_worker+0xed/0x190
[] process_one_work+0x93d/0x17e0(CVE-2024-40983)
In the Linux kernel, the following vulnerability has been resolved:
ACPICA: Revert &quot;ACPICA: avoid Info: mapping multiple BARs. Your kernel is fine.&quot;
Undo the modifications made in commit d410ee5109a1 (&quot;ACPICA: avoid
&quot;Info: mapping multiple BARs. Your kernel is fine.&quot;&quot;). The initial
purpose of this commit was to stop memory mappings for operation
regions from overlapping page boundaries, as it can trigger warnings
if different page attributes are present.
However, it was found that when this situation arises, mapping
continues until the boundary&apos;s end, but there is still an attempt to
read/write the entire length of the map, leading to a NULL pointer
deference. For example, if a four-byte mapping request is made but
only one byte is mapped because it hits the current page boundary&apos;s
end, a four-byte read/write attempt is still made, resulting in a NULL
pointer deference.
Instead, map the entire length, as the ACPI specification does not
mandate that it must be within the same page boundary. It is
permissible for it to be mapped across different regions.(CVE-2024-40984)
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: fix UBSAN warning in kv_dpm.c
Adds bounds check for sumo_vid_mapping_entry.(CVE-2024-40987)
In the Linux kernel, the following vulnerability has been resolved:
tracing: Build event generation tests only as modules
The kprobes and synth event generation test modules add events and lock
(get a reference) those event file reference in module init function,
and unlock and delete it in module exit function. This is because those
are designed for playing as modules.
If we make those modules as built-in, those events are left locked in the
kernel, and never be removed. This causes kprobe event self-test failure
as below.
[ 97.349708] ------------[ cut here ]------------
[ 97.353453] WARNING: CPU: 3 PID: 1 at kernel/trace/trace_kprobe.c:2133 kprobe_trace_self_tests_init+0x3f1/0x480
[ 97.357106] Modules linked in:
[ 97.358488] CPU: 3 PID: 1 Comm: swapper/0 Not tainted 6.9.0-g699646734ab5-dirty #14
[ 97.361556] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
[ 97.363880] RIP: 0010:kprobe_trace_self_tests_init+0x3f1/0x480
[ 97.365538] Code: a8 24 08 82 e9 ae fd ff ff 90 0f 0b 90 48 c7 c7 e5 aa 0b 82 e9 ee fc ff ff 90 0f 0b 90 48 c7 c7 2d 61 06 82 e9 8e fd ff ff 90 &lt;0f&gt; 0b 90 48 c7 c7 33 0b 0c 82 89 c6 e8 6e 03 1f ff 41 ff c7 e9 90
[ 97.370429] RSP: 0000:ffffc90000013b50 EFLAGS: 00010286
[ 97.371852] RAX: 00000000fffffff0 RBX: ffff888005919c00 RCX: 0000000000000000
[ 97.373829] RDX: ffff888003f40000 RSI: ffffffff8236a598 RDI: ffff888003f40a68
[ 97.375715] RBP: 0000000000000000 R08: 0000000000000001 R09: 0000000000000000
[ 97.377675] R10: ffffffff811c9ae5 R11: ffffffff8120c4e0 R12: 0000000000000000
[ 97.379591] R13: 0000000000000001 R14: 0000000000000015 R15: 0000000000000000
[ 97.381536] FS: 0000000000000000(0000) GS:ffff88807dcc0000(0000) knlGS:0000000000000000
[ 97.383813] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 97.385449] CR2: 0000000000000000 CR3: 0000000002244000 CR4: 00000000000006b0
[ 97.387347] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 97.389277] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 97.391196] Call Trace:
[ 97.391967] &lt;TASK&gt;
[ 97.392647] ? __warn+0xcc/0x180
[ 97.393640] ? kprobe_trace_self_tests_init+0x3f1/0x480
[ 97.395181] ? report_bug+0xbd/0x150
[ 97.396234] ? handle_bug+0x3e/0x60
[ 97.397311] ? exc_invalid_op+0x1a/0x50
[ 97.398434] ? asm_exc_invalid_op+0x1a/0x20
[ 97.399652] ? trace_kprobe_is_busy+0x20/0x20
[ 97.400904] ? tracing_reset_all_online_cpus+0x15/0x90
[ 97.402304] ? kprobe_trace_self_tests_init+0x3f1/0x480
[ 97.403773] ? init_kprobe_trace+0x50/0x50
[ 97.404972] do_one_initcall+0x112/0x240
[ 97.406113] do_initcall_level+0x95/0xb0
[ 97.407286] ? kernel_init+0x1a/0x1a0
[ 97.408401] do_initcalls+0x3f/0x70
[ 97.409452] kernel_init_freeable+0x16f/0x1e0
[ 97.410662] ? rest_init+0x1f0/0x1f0
[ 97.411738] kernel_init+0x1a/0x1a0
[ 97.412788] ret_from_fork+0x39/0x50
[ 97.413817] ? rest_init+0x1f0/0x1f0
[ 97.414844] ret_from_fork_asm+0x11/0x20
[ 97.416285] &lt;/TASK&gt;
[ 97.417134] irq event stamp: 13437323
[ 97.418376] hardirqs last enabled at (13437337): [&lt;ffffffff8110bc0c&gt;] console_unlock+0x11c/0x150
[ 97.421285] hardirqs last disabled at (13437370): [&lt;ffffffff8110bbf1&gt;] console_unlock+0x101/0x150
[ 97.423838] softirqs last enabled at (13437366): [&lt;ffffffff8108e17f&gt;] handle_softirqs+0x23f/0x2a0
[ 97.426450] softirqs last disabled at (13437393): [&lt;ffffffff8108e346&gt;] __irq_exit_rcu+0x66/0xd0
[ 97.428850] ---[ end trace 0000000000000000 ]---
And also, since we can not cleanup dynamic_event file, ftracetest are
failed too.
To avoid these issues, build these tests only as modules.(CVE-2024-41004)
In the Linux kernel, the following vulnerability has been resolved:
netpoll: Fix race condition in netpoll_owner_active
KCSAN detected a race condition in netpoll:
BUG: KCSAN: data-race in net_rx_action / netpoll_send_skb
write (marked) to 0xffff8881164168b0 of 4 bytes by interrupt on cpu 10:
net_rx_action (./include/linux/netpoll.h:90 net/core/dev.c:6712 net/core/dev.c:6822)
&lt;snip&gt;
read to 0xffff8881164168b0 of 4 bytes by task 1 on cpu 2:
netpoll_send_skb (net/core/netpoll.c:319 net/core/netpoll.c:345 net/core/netpoll.c:393)
netpoll_send_udp (net/core/netpoll.c:?)
&lt;snip&gt;
value changed: 0x0000000a -&gt; 0xffffffff
This happens because netpoll_owner_active() needs to check if the
current CPU is the owner of the lock, touching napi-&gt;poll_owner
non atomically. The -&gt;poll_owner field contains the current CPU holding
the lock.
Use an atomic read to check if the poll owner is the current CPU.(CVE-2024-41005)
In the Linux kernel, the following vulnerability has been resolved:
tcp: avoid too many retransmit packets
If a TCP socket is using TCP_USER_TIMEOUT, and the other peer
retracted its window to zero, tcp_retransmit_timer() can
retransmit a packet every two jiffies (2 ms for HZ=1000),
for about 4 minutes after TCP_USER_TIMEOUT has &apos;expired&apos;.
The fix is to make sure tcp_rtx_probe0_timed_out() takes
icsk-&gt;icsk_user_timeout into account.
Before blamed commit, the socket would not timeout after
icsk-&gt;icsk_user_timeout, but would use standard exponential
backoff for the retransmits.
Also worth noting that before commit e89688e3e978 (&quot;net: tcp:
fix unexcepted socket die when snd_wnd is 0&quot;), the issue
would last 2 minutes instead of 4.(CVE-2024-41007)
In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix overrunning reservations in ringbuf
The BPF ring buffer internally is implemented as a power-of-2 sized circular
buffer, with two logical and ever-increasing counters: consumer_pos is the
consumer counter to show which logical position the consumer consumed the
data, and producer_pos which is the producer counter denoting the amount of
data reserved by all producers.
Each time a record is reserved, the producer that &quot;owns&quot; the record will
successfully advance producer counter. In user space each time a record is
read, the consumer of the data advanced the consumer counter once it finished
processing. Both counters are stored in separate pages so that from user
space, the producer counter is read-only and the consumer counter is read-write.
One aspect that simplifies and thus speeds up the implementation of both
producers and consumers is how the data area is mapped twice contiguously
back-to-back in the virtual memory, allowing to not take any special measures
for samples that have to wrap around at the end of the circular buffer data
area, because the next page after the last data page would be first data page
again, and thus the sample will still appear completely contiguous in virtual
memory.
Each record has a struct bpf_ringbuf_hdr { u32 len; u32 pg_off; } header for
book-keeping the length and offset, and is inaccessible to the BPF program.
Helpers like bpf_ringbuf_reserve() return `(void *)hdr + BPF_RINGBUF_HDR_SZ`
for the BPF program to use. Bing-Jhong and Muhammad reported that it is however
possible to make a second allocated memory chunk overlapping with the first
chunk and as a result, the BPF program is now able to edit first chunk&apos;s
header.
For example, consider the creation of a BPF_MAP_TYPE_RINGBUF map with size
of 0x4000. Next, the consumer_pos is modified to 0x3000 /before/ a call to
bpf_ringbuf_reserve() is made. This will allocate a chunk A, which is in
[0x0,0x3008], and the BPF program is able to edit [0x8,0x3008]. Now, lets
allocate a chunk B with size 0x3000. This will succeed because consumer_pos
was edited ahead of time to pass the `new_prod_pos - cons_pos &gt; rb-&gt;mask`
check. Chunk B will be in range [0x3008,0x6010], and the BPF program is able
to edit [0x3010,0x6010]. Due to the ring buffer memory layout mentioned
earlier, the ranges [0x0,0x4000] and [0x4000,0x8000] point to the same data
pages. This means that chunk B at [0x4000,0x4008] is chunk A&apos;s header.
bpf_ringbuf_submit() / bpf_ringbuf_discard() use the header&apos;s pg_off to then
locate the bpf_ringbuf itself via bpf_ringbuf_restore_from_rec(). Once chunk
B modified chunk A&apos;s header, then bpf_ringbuf_commit() refers to the wrong
page and could cause a crash.
Fix it by calculating the oldest pending_pos and check whether the range
from the oldest outstanding record to the newest would span beyond the ring
buffer size. If that is the case, then reject the request. We&apos;ve tested with
the ring buffer benchmark in BPF selftests (./benchs/run_bench_ringbufs.sh)
before/after the fix and while it seems a bit slower on some benchmarks, it
is still not significantly enough to matter.(CVE-2024-41009)</Note>
<Note Title="Topic" Type="General" Ordinal="4" xml:lang="en">An update for kernel is now available for openEuler-24.03-LTS.
openEuler Security has rated this update as having a security impact of critical. A Common Vunlnerability Scoring System(CVSS)base score,which gives a detailed severity rating, is available for each vulnerability from the CVElink(s) in the References section.</Note>
<Note Title="Severity" Type="General" Ordinal="5" xml:lang="en">Critical</Note>
<Note Title="Affected Component" Type="General" Ordinal="6" xml:lang="en">kernel</Note>
</DocumentNotes>
<DocumentReferences>
<Reference Type="Self">
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Reference>
<Reference Type="openEuler CVE">
<URL>https://www.openeuler.org/en/security/cve/detail/?cveId=CVE-2024-34030</URL>
<URL>https://www.openeuler.org/en/security/cve/detail/?cveId=CVE-2024-36014</URL>
<URL>https://www.openeuler.org/en/security/cve/detail/?cveId=CVE-2024-36016</URL>
<URL>https://www.openeuler.org/en/security/cve/detail/?cveId=CVE-2024-36031</URL>
<URL>https://www.openeuler.org/en/security/cve/detail/?cveId=CVE-2024-36881</URL>
<URL>https://www.openeuler.org/en/security/cve/detail/?cveId=CVE-2024-36939</URL>
<URL>https://www.openeuler.org/en/security/cve/detail/?cveId=CVE-2024-36979</URL>
<URL>https://www.openeuler.org/en/security/cve/detail/?cveId=CVE-2024-38559</URL>
<URL>https://www.openeuler.org/en/security/cve/detail/?cveId=CVE-2024-38578</URL>
<URL>https://www.openeuler.org/en/security/cve/detail/?cveId=CVE-2024-38589</URL>
<URL>https://www.openeuler.org/en/security/cve/detail/?cveId=CVE-2024-38618</URL>
<URL>https://www.openeuler.org/en/security/cve/detail/?cveId=CVE-2024-38619</URL>
<URL>https://www.openeuler.org/en/security/cve/detail/?cveId=CVE-2024-39463</URL>
<URL>https://www.openeuler.org/en/security/cve/detail/?cveId=CVE-2024-39469</URL>
<URL>https://www.openeuler.org/en/security/cve/detail/?cveId=CVE-2024-39472</URL>
<URL>https://www.openeuler.org/en/security/cve/detail/?cveId=CVE-2024-39485</URL>
<URL>https://www.openeuler.org/en/security/cve/detail/?cveId=CVE-2024-39494</URL>
<URL>https://www.openeuler.org/en/security/cve/detail/?cveId=CVE-2024-39499</URL>
<URL>https://www.openeuler.org/en/security/cve/detail/?cveId=CVE-2024-39505</URL>
<URL>https://www.openeuler.org/en/security/cve/detail/?cveId=CVE-2024-40912</URL>
<URL>https://www.openeuler.org/en/security/cve/detail/?cveId=CVE-2024-40916</URL>
<URL>https://www.openeuler.org/en/security/cve/detail/?cveId=CVE-2024-40918</URL>
<URL>https://www.openeuler.org/en/security/cve/detail/?cveId=CVE-2024-40923</URL>
<URL>https://www.openeuler.org/en/security/cve/detail/?cveId=CVE-2024-40929</URL>
<URL>https://www.openeuler.org/en/security/cve/detail/?cveId=CVE-2024-40932</URL>
<URL>https://www.openeuler.org/en/security/cve/detail/?cveId=CVE-2024-40936</URL>
<URL>https://www.openeuler.org/en/security/cve/detail/?cveId=CVE-2024-40941</URL>
<URL>https://www.openeuler.org/en/security/cve/detail/?cveId=CVE-2024-40943</URL>
<URL>https://www.openeuler.org/en/security/cve/detail/?cveId=CVE-2024-40951</URL>
<URL>https://www.openeuler.org/en/security/cve/detail/?cveId=CVE-2024-40952</URL>
<URL>https://www.openeuler.org/en/security/cve/detail/?cveId=CVE-2024-40957</URL>
<URL>https://www.openeuler.org/en/security/cve/detail/?cveId=CVE-2024-40968</URL>
<URL>https://www.openeuler.org/en/security/cve/detail/?cveId=CVE-2024-40974</URL>
<URL>https://www.openeuler.org/en/security/cve/detail/?cveId=CVE-2024-40975</URL>
<URL>https://www.openeuler.org/en/security/cve/detail/?cveId=CVE-2024-40977</URL>
<URL>https://www.openeuler.org/en/security/cve/detail/?cveId=CVE-2024-40983</URL>
<URL>https://www.openeuler.org/en/security/cve/detail/?cveId=CVE-2024-40984</URL>
<URL>https://www.openeuler.org/en/security/cve/detail/?cveId=CVE-2024-40987</URL>
<URL>https://www.openeuler.org/en/security/cve/detail/?cveId=CVE-2024-41004</URL>
<URL>https://www.openeuler.org/en/security/cve/detail/?cveId=CVE-2024-41005</URL>
<URL>https://www.openeuler.org/en/security/cve/detail/?cveId=CVE-2024-41007</URL>
<URL>https://www.openeuler.org/en/security/cve/detail/?cveId=CVE-2024-41009</URL>
</Reference>
<Reference Type="Other">
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-34030</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-36014</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-36016</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-36031</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-36881</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-36939</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-36979</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-38559</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-38578</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-38589</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-38618</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-38619</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-39463</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-39469</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-39472</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-39485</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-39494</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-39499</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-39505</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-40912</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-40916</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-40918</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-40923</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-40929</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-40932</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-40936</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-40941</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-40943</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-40951</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-40952</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-40957</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-40968</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-40974</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-40975</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-40977</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-40983</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-40984</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-40987</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-41004</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-41005</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-41007</URL>
<URL>https://nvd.nist.gov/vuln/detail/CVE-2024-41009</URL>
</Reference>
</DocumentReferences>
<ProductTree xmlns="http://www.icasi.org/CVRF/schema/prod/1.1">
<Branch Type="Product Name" Name="openEuler">
<FullProductName ProductID="openEuler-24.03-LTS" CPE="cpe:/a:openEuler:openEuler:24.03-LTS">openEuler-24.03-LTS</FullProductName>
</Branch>
<Branch Type="Package Arch" Name="x86_64">
<FullProductName ProductID="bpftool-6.6.0-35.0.0.43" CPE="cpe:/a:openEuler:openEuler:24.03-LTS">bpftool-6.6.0-35.0.0.43.oe2403.x86_64.rpm</FullProductName>
<FullProductName ProductID="bpftool-debuginfo-6.6.0-35.0.0.43" CPE="cpe:/a:openEuler:openEuler:24.03-LTS">bpftool-debuginfo-6.6.0-35.0.0.43.oe2403.x86_64.rpm</FullProductName>
<FullProductName ProductID="kernel-6.6.0-35.0.0.43" CPE="cpe:/a:openEuler:openEuler:24.03-LTS">kernel-6.6.0-35.0.0.43.oe2403.x86_64.rpm</FullProductName>
<FullProductName ProductID="kernel-debuginfo-6.6.0-35.0.0.43" CPE="cpe:/a:openEuler:openEuler:24.03-LTS">kernel-debuginfo-6.6.0-35.0.0.43.oe2403.x86_64.rpm</FullProductName>
<FullProductName ProductID="kernel-debugsource-6.6.0-35.0.0.43" CPE="cpe:/a:openEuler:openEuler:24.03-LTS">kernel-debugsource-6.6.0-35.0.0.43.oe2403.x86_64.rpm</FullProductName>
<FullProductName ProductID="kernel-devel-6.6.0-35.0.0.43" CPE="cpe:/a:openEuler:openEuler:24.03-LTS">kernel-devel-6.6.0-35.0.0.43.oe2403.x86_64.rpm</FullProductName>
<FullProductName ProductID="kernel-headers-6.6.0-35.0.0.43" CPE="cpe:/a:openEuler:openEuler:24.03-LTS">kernel-headers-6.6.0-35.0.0.43.oe2403.x86_64.rpm</FullProductName>
<FullProductName ProductID="kernel-source-6.6.0-35.0.0.43" CPE="cpe:/a:openEuler:openEuler:24.03-LTS">kernel-source-6.6.0-35.0.0.43.oe2403.x86_64.rpm</FullProductName>
<FullProductName ProductID="kernel-tools-6.6.0-35.0.0.43" CPE="cpe:/a:openEuler:openEuler:24.03-LTS">kernel-tools-6.6.0-35.0.0.43.oe2403.x86_64.rpm</FullProductName>
<FullProductName ProductID="kernel-tools-debuginfo-6.6.0-35.0.0.43" CPE="cpe:/a:openEuler:openEuler:24.03-LTS">kernel-tools-debuginfo-6.6.0-35.0.0.43.oe2403.x86_64.rpm</FullProductName>
<FullProductName ProductID="kernel-tools-devel-6.6.0-35.0.0.43" CPE="cpe:/a:openEuler:openEuler:24.03-LTS">kernel-tools-devel-6.6.0-35.0.0.43.oe2403.x86_64.rpm</FullProductName>
<FullProductName ProductID="perf-6.6.0-35.0.0.43" CPE="cpe:/a:openEuler:openEuler:24.03-LTS">perf-6.6.0-35.0.0.43.oe2403.x86_64.rpm</FullProductName>
<FullProductName ProductID="perf-debuginfo-6.6.0-35.0.0.43" CPE="cpe:/a:openEuler:openEuler:24.03-LTS">perf-debuginfo-6.6.0-35.0.0.43.oe2403.x86_64.rpm</FullProductName>
<FullProductName ProductID="python3-perf-6.6.0-35.0.0.43" CPE="cpe:/a:openEuler:openEuler:24.03-LTS">python3-perf-6.6.0-35.0.0.43.oe2403.x86_64.rpm</FullProductName>
<FullProductName ProductID="python3-perf-debuginfo-6.6.0-35.0.0.43" CPE="cpe:/a:openEuler:openEuler:24.03-LTS">python3-perf-debuginfo-6.6.0-35.0.0.43.oe2403.x86_64.rpm</FullProductName>
</Branch>
<Branch Type="Package Arch" Name="src">
<FullProductName ProductID="kernel-6.6.0-35.0.0.43" CPE="cpe:/a:openEuler:openEuler:24.03-LTS">kernel-6.6.0-35.0.0.43.oe2403.src.rpm</FullProductName>
</Branch>
<Branch Type="Package Arch" Name="aarch64">
<FullProductName ProductID="bpftool-6.6.0-35.0.0.43" CPE="cpe:/a:openEuler:openEuler:24.03-LTS">bpftool-6.6.0-35.0.0.43.oe2403.aarch64.rpm</FullProductName>
<FullProductName ProductID="bpftool-debuginfo-6.6.0-35.0.0.43" CPE="cpe:/a:openEuler:openEuler:24.03-LTS">bpftool-debuginfo-6.6.0-35.0.0.43.oe2403.aarch64.rpm</FullProductName>
<FullProductName ProductID="kernel-6.6.0-35.0.0.43" CPE="cpe:/a:openEuler:openEuler:24.03-LTS">kernel-6.6.0-35.0.0.43.oe2403.aarch64.rpm</FullProductName>
<FullProductName ProductID="kernel-debuginfo-6.6.0-35.0.0.43" CPE="cpe:/a:openEuler:openEuler:24.03-LTS">kernel-debuginfo-6.6.0-35.0.0.43.oe2403.aarch64.rpm</FullProductName>
<FullProductName ProductID="kernel-debugsource-6.6.0-35.0.0.43" CPE="cpe:/a:openEuler:openEuler:24.03-LTS">kernel-debugsource-6.6.0-35.0.0.43.oe2403.aarch64.rpm</FullProductName>
<FullProductName ProductID="kernel-devel-6.6.0-35.0.0.43" CPE="cpe:/a:openEuler:openEuler:24.03-LTS">kernel-devel-6.6.0-35.0.0.43.oe2403.aarch64.rpm</FullProductName>
<FullProductName ProductID="kernel-headers-6.6.0-35.0.0.43" CPE="cpe:/a:openEuler:openEuler:24.03-LTS">kernel-headers-6.6.0-35.0.0.43.oe2403.aarch64.rpm</FullProductName>
<FullProductName ProductID="kernel-source-6.6.0-35.0.0.43" CPE="cpe:/a:openEuler:openEuler:24.03-LTS">kernel-source-6.6.0-35.0.0.43.oe2403.aarch64.rpm</FullProductName>
<FullProductName ProductID="kernel-tools-6.6.0-35.0.0.43" CPE="cpe:/a:openEuler:openEuler:24.03-LTS">kernel-tools-6.6.0-35.0.0.43.oe2403.aarch64.rpm</FullProductName>
<FullProductName ProductID="kernel-tools-debuginfo-6.6.0-35.0.0.43" CPE="cpe:/a:openEuler:openEuler:24.03-LTS">kernel-tools-debuginfo-6.6.0-35.0.0.43.oe2403.aarch64.rpm</FullProductName>
<FullProductName ProductID="kernel-tools-devel-6.6.0-35.0.0.43" CPE="cpe:/a:openEuler:openEuler:24.03-LTS">kernel-tools-devel-6.6.0-35.0.0.43.oe2403.aarch64.rpm</FullProductName>
<FullProductName ProductID="perf-6.6.0-35.0.0.43" CPE="cpe:/a:openEuler:openEuler:24.03-LTS">perf-6.6.0-35.0.0.43.oe2403.aarch64.rpm</FullProductName>
<FullProductName ProductID="perf-debuginfo-6.6.0-35.0.0.43" CPE="cpe:/a:openEuler:openEuler:24.03-LTS">perf-debuginfo-6.6.0-35.0.0.43.oe2403.aarch64.rpm</FullProductName>
<FullProductName ProductID="python3-perf-6.6.0-35.0.0.43" CPE="cpe:/a:openEuler:openEuler:24.03-LTS">python3-perf-6.6.0-35.0.0.43.oe2403.aarch64.rpm</FullProductName>
<FullProductName ProductID="python3-perf-debuginfo-6.6.0-35.0.0.43" CPE="cpe:/a:openEuler:openEuler:24.03-LTS">python3-perf-debuginfo-6.6.0-35.0.0.43.oe2403.aarch64.rpm</FullProductName>
</Branch>
</ProductTree>
<Vulnerability Ordinal="1" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
PCI: of_property: Return error for int_map allocation failure
Return -ENOMEM from of_pci_prop_intr_map() if kcalloc() fails to prevent a
NULL pointer dereference in this case.
[bhelgaas: commit log]</Note>
</Notes>
<ReleaseDate>2024-07-26</ReleaseDate>
<CVE>CVE-2024-34030</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-24.03-LTS</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Low</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>3.9</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:L/I:L/A:L</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-07-26</DATE>
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="2" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
drm/arm/malidp: fix a possible null pointer dereference
In malidp_mw_connector_reset, new memory is allocated with kzalloc, but
no check is performed. In order to prevent null pointer dereferencing,
ensure that mw_state is checked before calling
__drm_atomic_helper_connector_reset.</Note>
</Notes>
<ReleaseDate>2024-07-26</ReleaseDate>
<CVE>CVE-2024-36014</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-24.03-LTS</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-07-26</DATE>
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="3" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
tty: n_gsm: fix possible out-of-bounds in gsm0_receive()
Assuming the following:
- side A configures the n_gsm in basic option mode
- side B sends the header of a basic option mode frame with data length 1
- side A switches to advanced option mode
- side B sends 2 data bytes which exceeds gsm-&gt;len
Reason: gsm-&gt;len is not used in advanced option mode.
- side A switches to basic option mode
- side B keeps sending until gsm0_receive() writes past gsm-&gt;buf
Reason: Neither gsm-&gt;state nor gsm-&gt;len have been reset after
reconfiguration.
Fix this by changing gsm-&gt;count to gsm-&gt;len comparison from equal to less
than. Also add upper limit checks against the constant MAX_MRU in
gsm0_receive() and gsm1_receive() to harden against memory corruption of
gsm-&gt;len and gsm-&gt;mru.
All other checks remain as we still need to limit the data according to the
user configuration and actual payload size.</Note>
</Notes>
<ReleaseDate>2024-07-26</ReleaseDate>
<CVE>CVE-2024-36016</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-24.03-LTS</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>6.7</BaseScore>
<Vector>AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:H/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-07-26</DATE>
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="4" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:keys: Fix overwrite of key expiration on instantiationThe expiry time of a key is unconditionally overwritten duringinstantiation, defaulting to turn it permanent. This causes a problemfor DNS resolution as the expiration set by user-space is overwritten toTIME64_MAX, disabling further DNS updates. Fix this by restoring thecondition that key_set_expiry is only called when the pre-parser sets aspecific expiry.</Note>
</Notes>
<ReleaseDate>2024-07-26</ReleaseDate>
<CVE>CVE-2024-36031</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-24.03-LTS</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Critical</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>9.8</BaseScore>
<Vector>AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-07-26</DATE>
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="5" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
mm/userfaultfd: reset ptes when close() for wr-protected ones
Userfaultfd unregister includes a step to remove wr-protect bits from all
the relevant pgtable entries, but that only covered an explicit
UFFDIO_UNREGISTER ioctl, not a close() on the userfaultfd itself. Cover
that too. This fixes a WARN trace.
The only user visible side effect is the user can observe leftover
wr-protect bits even if the user close()ed on an userfaultfd when
releasing the last reference of it. However hopefully that should be
harmless, and nothing bad should happen even if so.
This change is now more important after the recent page-table-check
patch we merged in mm-unstable (446dd9ad37d0 (&quot;mm/page_table_check:
support userfault wr-protect entries&quot;)), as we&apos;ll do sanity check on
uffd-wp bits without vma context. So it&apos;s better if we can 100%
guarantee no uffd-wp bit leftovers, to make sure each report will be
valid.</Note>
</Notes>
<ReleaseDate>2024-07-26</ReleaseDate>
<CVE>CVE-2024-36881</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-24.03-LTS</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-07-26</DATE>
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="6" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
nfs: Handle error of rpc_proc_register() in nfs_net_init().
syzkaller reported a warning [0] triggered while destroying immature
netns.
rpc_proc_register() was called in init_nfs_fs(), but its error
has been ignored since at least the initial commit 1da177e4c3f4
(&quot;Linux-2.6.12-rc2&quot;).
Recently, commit d47151b79e32 (&quot;nfs: expose /proc/net/sunrpc/nfs
in net namespaces&quot;) converted the procfs to per-netns and made
the problem more visible.
Even when rpc_proc_register() fails, nfs_net_init() could succeed,
and thus nfs_net_exit() will be called while destroying the netns.
Then, remove_proc_entry() will be called for non-existing proc
directory and trigger the warning below.
Let&apos;s handle the error of rpc_proc_register() properly in nfs_net_init().
[0]:
name &apos;nfs&apos;
WARNING: CPU: 1 PID: 1710 at fs/proc/generic.c:711 remove_proc_entry+0x1bb/0x2d0 fs/proc/generic.c:711
Modules linked in:
CPU: 1 PID: 1710 Comm: syz-executor.2 Not tainted 6.8.0-12822-gcd51db110a7e #12
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
RIP: 0010:remove_proc_entry+0x1bb/0x2d0 fs/proc/generic.c:711
Code: 41 5d 41 5e c3 e8 85 09 b5 ff 48 c7 c7 88 58 64 86 e8 09 0e 71 02 e8 74 09 b5 ff 4c 89 e6 48 c7 c7 de 1b 80 84 e8 c5 ad 97 ff &lt;0f&gt; 0b eb b1 e8 5c 09 b5 ff 48 c7 c7 88 58 64 86 e8 e0 0d 71 02 eb
RSP: 0018:ffffc9000c6d7ce0 EFLAGS: 00010286
RAX: 0000000000000000 RBX: ffff8880422b8b00 RCX: ffffffff8110503c
RDX: ffff888030652f00 RSI: ffffffff81105045 RDI: 0000000000000001
RBP: 0000000000000000 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000001 R11: ffffffff81bb62cb R12: ffffffff84807ffc
R13: ffff88804ad6fcc0 R14: ffffffff84807ffc R15: ffffffff85741ff8
FS: 00007f30cfba8640(0000) GS:ffff88807dd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007ff51afe8000 CR3: 000000005a60a005 CR4: 0000000000770ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
&lt;TASK&gt;
rpc_proc_unregister+0x64/0x70 net/sunrpc/stats.c:310
nfs_net_exit+0x1c/0x30 fs/nfs/inode.c:2438
ops_exit_list+0x62/0xb0 net/core/net_namespace.c:170
setup_net+0x46c/0x660 net/core/net_namespace.c:372
copy_net_ns+0x244/0x590 net/core/net_namespace.c:505
create_new_namespaces+0x2ed/0x770 kernel/nsproxy.c:110
unshare_nsproxy_namespaces+0xae/0x160 kernel/nsproxy.c:228
ksys_unshare+0x342/0x760 kernel/fork.c:3322
__do_sys_unshare kernel/fork.c:3393 [inline]
__se_sys_unshare kernel/fork.c:3391 [inline]
__x64_sys_unshare+0x1f/0x30 kernel/fork.c:3391
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0x4f/0x110 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x46/0x4e
RIP: 0033:0x7f30d0febe5d
Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 &lt;48&gt; 3d 01 f0 ff ff 73 01 c3 48 8b 0d 73 9f 1b 00 f7 d8 64 89 01 48
RSP: 002b:00007f30cfba7cc8 EFLAGS: 00000246 ORIG_RAX: 0000000000000110
RAX: ffffffffffffffda RBX: 00000000004bbf80 RCX: 00007f30d0febe5d
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 000000006c020600
RBP: 00000000004bbf80 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000002
R13: 000000000000000b R14: 00007f30d104c530 R15: 0000000000000000
&lt;/TASK&gt;</Note>
</Notes>
<ReleaseDate>2024-07-26</ReleaseDate>
<CVE>CVE-2024-36939</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-24.03-LTS</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>4.6</BaseScore>
<Vector>AV:A/AC:H/PR:L/UI:N/S:U/C:L/I:L/A:L</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-07-26</DATE>
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="7" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
net: bridge: mst: fix vlan use-after-free
syzbot reported a suspicious rcu usage[1] in bridge&apos;s mst code. While
fixing it I noticed that nothing prevents a vlan to be freed while
walking the list from the same path (br forward delay timer). Fix the rcu
usage and also make sure we are not accessing freed memory by making
br_mst_vlan_set_state use rcu read lock.
[1]
WARNING: suspicious RCU usage
6.9.0-rc6-syzkaller #0 Not tainted
-----------------------------
net/bridge/br_private.h:1599 suspicious rcu_dereference_protected() usage!
...
stack backtrace:
CPU: 1 PID: 8017 Comm: syz-executor.1 Not tainted 6.9.0-rc6-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024
Call Trace:
&lt;IRQ&gt;
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:114
lockdep_rcu_suspicious+0x221/0x340 kernel/locking/lockdep.c:6712
nbp_vlan_group net/bridge/br_private.h:1599 [inline]
br_mst_set_state+0x1ea/0x650 net/bridge/br_mst.c:105
br_set_state+0x28a/0x7b0 net/bridge/br_stp.c:47
br_forward_delay_timer_expired+0x176/0x440 net/bridge/br_stp_timer.c:88
call_timer_fn+0x18e/0x650 kernel/time/timer.c:1793
expire_timers kernel/time/timer.c:1844 [inline]
__run_timers kernel/time/timer.c:2418 [inline]
__run_timer_base+0x66a/0x8e0 kernel/time/timer.c:2429
run_timer_base kernel/time/timer.c:2438 [inline]
run_timer_softirq+0xb7/0x170 kernel/time/timer.c:2448
__do_softirq+0x2c6/0x980 kernel/softirq.c:554
invoke_softirq kernel/softirq.c:428 [inline]
__irq_exit_rcu+0xf2/0x1c0 kernel/softirq.c:633
irq_exit_rcu+0x9/0x30 kernel/softirq.c:645
instr_sysvec_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1043 [inline]
sysvec_apic_timer_interrupt+0xa6/0xc0 arch/x86/kernel/apic/apic.c:1043
&lt;/IRQ&gt;
&lt;TASK&gt;
asm_sysvec_apic_timer_interrupt+0x1a/0x20 arch/x86/include/asm/idtentry.h:702
RIP: 0010:lock_acquire+0x264/0x550 kernel/locking/lockdep.c:5758
Code: 2b 00 74 08 4c 89 f7 e8 ba d1 84 00 f6 44 24 61 02 0f 85 85 01 00 00 41 f7 c7 00 02 00 00 74 01 fb 48 c7 44 24 40 0e 36 e0 45 &lt;4b&gt; c7 44 25 00 00 00 00 00 43 c7 44 25 09 00 00 00 00 43 c7 44 25
RSP: 0018:ffffc90013657100 EFLAGS: 00000206
RAX: 0000000000000001 RBX: 1ffff920026cae2c RCX: 0000000000000001
RDX: dffffc0000000000 RSI: ffffffff8bcaca00 RDI: ffffffff8c1eaa60
RBP: ffffc90013657260 R08: ffffffff92efe507 R09: 1ffffffff25dfca0
R10: dffffc0000000000 R11: fffffbfff25dfca1 R12: 1ffff920026cae28
R13: dffffc0000000000 R14: ffffc90013657160 R15: 0000000000000246</Note>
</Notes>
<ReleaseDate>2024-07-26</ReleaseDate>
<CVE>CVE-2024-36979</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-24.03-LTS</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>High</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>7.0</BaseScore>
<Vector>AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-07-26</DATE>
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="8" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
scsi: qedf: Ensure the copied buf is NUL terminated
Currently, we allocate a count-sized kernel buffer and copy count from
userspace to that buffer. Later, we use kstrtouint on this buffer but we
don&apos;t ensure that the string is terminated inside the buffer, this can
lead to OOB read when using kstrtouint. Fix this issue by using
memdup_user_nul instead of memdup_user.</Note>
</Notes>
<ReleaseDate>2024-07-26</ReleaseDate>
<CVE>CVE-2024-38559</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-24.03-LTS</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>High</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>7.8</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-07-26</DATE>
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="9" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
ecryptfs: Fix buffer size for tag 66 packet
The &apos;TAG 66 Packet Format&apos; description is missing the cipher code and
checksum fields that are packed into the message packet. As a result,
the buffer allocated for the packet is 3 bytes too small and
write_tag_66_packet() will write up to 3 bytes past the end of the
buffer.
Fix this by increasing the size of the allocation so the whole packet
will always fit in the buffer.
This fixes the below kasan slab-out-of-bounds bug:
BUG: KASAN: slab-out-of-bounds in ecryptfs_generate_key_packet_set+0x7d6/0xde0
Write of size 1 at addr ffff88800afbb2a5 by task touch/181
CPU: 0 PID: 181 Comm: touch Not tainted 6.6.13-gnu #1 4c9534092be820851bb687b82d1f92a426598dc6
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2/GNU Guix 04/01/2014
Call Trace:
&lt;TASK&gt;
dump_stack_lvl+0x4c/0x70
print_report+0xc5/0x610
? ecryptfs_generate_key_packet_set+0x7d6/0xde0
? kasan_complete_mode_report_info+0x44/0x210
? ecryptfs_generate_key_packet_set+0x7d6/0xde0
kasan_report+0xc2/0x110
? ecryptfs_generate_key_packet_set+0x7d6/0xde0
__asan_store1+0x62/0x80
ecryptfs_generate_key_packet_set+0x7d6/0xde0
? __pfx_ecryptfs_generate_key_packet_set+0x10/0x10
? __alloc_pages+0x2e2/0x540
? __pfx_ovl_open+0x10/0x10 [overlay 30837f11141636a8e1793533a02e6e2e885dad1d]
? dentry_open+0x8f/0xd0
ecryptfs_write_metadata+0x30a/0x550
? __pfx_ecryptfs_write_metadata+0x10/0x10
? ecryptfs_get_lower_file+0x6b/0x190
ecryptfs_initialize_file+0x77/0x150
ecryptfs_create+0x1c2/0x2f0
path_openat+0x17cf/0x1ba0
? __pfx_path_openat+0x10/0x10
do_filp_open+0x15e/0x290
? __pfx_do_filp_open+0x10/0x10
? __kasan_check_write+0x18/0x30
? _raw_spin_lock+0x86/0xf0
? __pfx__raw_spin_lock+0x10/0x10
? __kasan_check_write+0x18/0x30
? alloc_fd+0xf4/0x330
do_sys_openat2+0x122/0x160
? __pfx_do_sys_openat2+0x10/0x10
__x64_sys_openat+0xef/0x170
? __pfx___x64_sys_openat+0x10/0x10
do_syscall_64+0x60/0xd0
entry_SYSCALL_64_after_hwframe+0x6e/0xd8
RIP: 0033:0x7f00a703fd67
Code: 25 00 00 41 00 3d 00 00 41 00 74 37 64 8b 04 25 18 00 00 00 85 c0 75 5b 44 89 e2 48 89 ee bf 9c ff ff ff b8 01 01 00 00 0f 05 &lt;48&gt; 3d 00 f0 ff ff 0f 87 85 00 00 00 48 83 c4 68 5d 41 5c c3 0f 1f
RSP: 002b:00007ffc088e30b0 EFLAGS: 00000246 ORIG_RAX: 0000000000000101
RAX: ffffffffffffffda RBX: 00007ffc088e3368 RCX: 00007f00a703fd67
RDX: 0000000000000941 RSI: 00007ffc088e48d7 RDI: 00000000ffffff9c
RBP: 00007ffc088e48d7 R08: 0000000000000001 R09: 0000000000000000
R10: 00000000000001b6 R11: 0000000000000246 R12: 0000000000000941
R13: 0000000000000000 R14: 00007ffc088e48d7 R15: 00007f00a7180040
&lt;/TASK&gt;
Allocated by task 181:
kasan_save_stack+0x2f/0x60
kasan_set_track+0x29/0x40
kasan_save_alloc_info+0x25/0x40
__kasan_kmalloc+0xc5/0xd0
__kmalloc+0x66/0x160
ecryptfs_generate_key_packet_set+0x6d2/0xde0
ecryptfs_write_metadata+0x30a/0x550
ecryptfs_initialize_file+0x77/0x150
ecryptfs_create+0x1c2/0x2f0
path_openat+0x17cf/0x1ba0
do_filp_open+0x15e/0x290
do_sys_openat2+0x122/0x160
__x64_sys_openat+0xef/0x170
do_syscall_64+0x60/0xd0
entry_SYSCALL_64_after_hwframe+0x6e/0xd8</Note>
</Notes>
<ReleaseDate>2024-07-26</ReleaseDate>
<CVE>CVE-2024-38578</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-24.03-LTS</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Low</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>3.9</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:L/I:L/A:L</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-07-26</DATE>
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="10" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
netrom: fix possible dead-lock in nr_rt_ioctl()
syzbot loves netrom, and found a possible deadlock in nr_rt_ioctl [1]
Make sure we always acquire nr_node_list_lock before nr_node_lock(nr_node)
[1]
WARNING: possible circular locking dependency detected
6.9.0-rc7-syzkaller-02147-g654de42f3fc6 #0 Not tainted
------------------------------------------------------
syz-executor350/5129 is trying to acquire lock:
ffff8880186e2070 (&amp;nr_node-&gt;node_lock){+...}-{2:2}, at: spin_lock_bh include/linux/spinlock.h:356 [inline]
ffff8880186e2070 (&amp;nr_node-&gt;node_lock){+...}-{2:2}, at: nr_node_lock include/net/netrom.h:152 [inline]
ffff8880186e2070 (&amp;nr_node-&gt;node_lock){+...}-{2:2}, at: nr_dec_obs net/netrom/nr_route.c:464 [inline]
ffff8880186e2070 (&amp;nr_node-&gt;node_lock){+...}-{2:2}, at: nr_rt_ioctl+0x1bb/0x1090 net/netrom/nr_route.c:697
but task is already holding lock:
ffffffff8f7053b8 (nr_node_list_lock){+...}-{2:2}, at: spin_lock_bh include/linux/spinlock.h:356 [inline]
ffffffff8f7053b8 (nr_node_list_lock){+...}-{2:2}, at: nr_dec_obs net/netrom/nr_route.c:462 [inline]
ffffffff8f7053b8 (nr_node_list_lock){+...}-{2:2}, at: nr_rt_ioctl+0x10a/0x1090 net/netrom/nr_route.c:697
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-&gt; #1 (nr_node_list_lock){+...}-{2:2}:
lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5754
__raw_spin_lock_bh include/linux/spinlock_api_smp.h:126 [inline]
_raw_spin_lock_bh+0x35/0x50 kernel/locking/spinlock.c:178
spin_lock_bh include/linux/spinlock.h:356 [inline]
nr_remove_node net/netrom/nr_route.c:299 [inline]
nr_del_node+0x4b4/0x820 net/netrom/nr_route.c:355
nr_rt_ioctl+0xa95/0x1090 net/netrom/nr_route.c:683
sock_do_ioctl+0x158/0x460 net/socket.c:1222
sock_ioctl+0x629/0x8e0 net/socket.c:1341
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:904 [inline]
__se_sys_ioctl+0xfc/0x170 fs/ioctl.c:890
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf5/0x240 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
-&gt; #0 (&amp;nr_node-&gt;node_lock){+...}-{2:2}:
check_prev_add kernel/locking/lockdep.c:3134 [inline]
check_prevs_add kernel/locking/lockdep.c:3253 [inline]
validate_chain+0x18cb/0x58e0 kernel/locking/lockdep.c:3869
__lock_acquire+0x1346/0x1fd0 kernel/locking/lockdep.c:5137
lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5754
__raw_spin_lock_bh include/linux/spinlock_api_smp.h:126 [inline]
_raw_spin_lock_bh+0x35/0x50 kernel/locking/spinlock.c:178
spin_lock_bh include/linux/spinlock.h:356 [inline]
nr_node_lock include/net/netrom.h:152 [inline]
nr_dec_obs net/netrom/nr_route.c:464 [inline]
nr_rt_ioctl+0x1bb/0x1090 net/netrom/nr_route.c:697
sock_do_ioctl+0x158/0x460 net/socket.c:1222
sock_ioctl+0x629/0x8e0 net/socket.c:1341
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:904 [inline]
__se_sys_ioctl+0xfc/0x170 fs/ioctl.c:890
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf5/0x240 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(nr_node_list_lock);
lock(&amp;nr_node-&gt;node_lock);
lock(nr_node_list_lock);
lock(&amp;nr_node-&gt;node_lock);
*** DEADLOCK ***
1 lock held by syz-executor350/5129:
#0: ffffffff8f7053b8 (nr_node_list_lock){+...}-{2:2}, at: spin_lock_bh include/linux/spinlock.h:356 [inline]
#0: ffffffff8f7053b8 (nr_node_list_lock){+...}-{2:2}, at: nr_dec_obs net/netrom/nr_route.c:462 [inline]
#0: ffffffff8f70
---truncated---</Note>
</Notes>
<ReleaseDate>2024-07-26</ReleaseDate>
<CVE>CVE-2024-38589</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-24.03-LTS</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-07-26</DATE>
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="11" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
ALSA: timer: Set lower bound of start tick time
Currently ALSA timer doesn&apos;t have the lower limit of the start tick
time, and it allows a very small size, e.g. 1 tick with 1ns resolution
for hrtimer. Such a situation may lead to an unexpected RCU stall,
where the callback repeatedly queuing the expire update, as reported
by fuzzer.
This patch introduces a sanity check of the timer start tick time, so
that the system returns an error when a too small start size is set.
As of this patch, the lower limit is hard-coded to 100us, which is
small enough but can still work somehow.</Note>
</Notes>
<ReleaseDate>2024-07-26</ReleaseDate>
<CVE>CVE-2024-38618</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-24.03-LTS</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>4.7</BaseScore>
<Vector>AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-07-26</DATE>
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="12" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
usb-storage: alauda: Check whether the media is initialized
The member &quot;uzonesize&quot; of struct alauda_info will remain 0
if alauda_init_media() fails, potentially causing divide errors
in alauda_read_data() and alauda_write_lba().
- Add a member &quot;media_initialized&quot; to struct alauda_info.
- Change a condition in alauda_check_media() to ensure the
first initialization.
- Add an error check for the return value of alauda_init_media().</Note>
</Notes>
<ReleaseDate>2024-07-26</ReleaseDate>
<CVE>CVE-2024-38619</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-24.03-LTS</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-07-26</DATE>
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="13" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
9p: add missing locking around taking dentry fid list
Fix a use-after-free on dentry&apos;s d_fsdata fid list when a thread
looks up a fid through dentry while another thread unlinks it:
UAF thread:
refcount_t: addition on 0; use-after-free.
p9_fid_get linux/./include/net/9p/client.h:262
v9fs_fid_find+0x236/0x280 linux/fs/9p/fid.c:129
v9fs_fid_lookup_with_uid linux/fs/9p/fid.c:181
v9fs_fid_lookup+0xbf/0xc20 linux/fs/9p/fid.c:314
v9fs_vfs_getattr_dotl+0xf9/0x360 linux/fs/9p/vfs_inode_dotl.c:400
vfs_statx+0xdd/0x4d0 linux/fs/stat.c:248
Freed by:
p9_fid_destroy (inlined)
p9_client_clunk+0xb0/0xe0 linux/net/9p/client.c:1456
p9_fid_put linux/./include/net/9p/client.h:278
v9fs_dentry_release+0xb5/0x140 linux/fs/9p/vfs_dentry.c:55
v9fs_remove+0x38f/0x620 linux/fs/9p/vfs_inode.c:518
vfs_unlink+0x29a/0x810 linux/fs/namei.c:4335
The problem is that d_fsdata was not accessed under d_lock, because
d_release() normally is only called once the dentry is otherwise no
longer accessible but since we also call it explicitly in v9fs_remove
that lock is required:
move the hlist out of the dentry under lock then unref its fids once
they are no longer accessible.</Note>
</Notes>
<ReleaseDate>2024-07-26</ReleaseDate>
<CVE>CVE-2024-39463</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-24.03-LTS</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-07-26</DATE>
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="14" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix nilfs_empty_dir() misjudgment and long loop on I/O errors
The error handling in nilfs_empty_dir() when a directory folio/page read
fails is incorrect, as in the old ext2 implementation, and if the
folio/page cannot be read or nilfs_check_folio() fails, it will falsely
determine the directory as empty and corrupt the file system.
In addition, since nilfs_empty_dir() does not immediately return on a
failed folio/page read, but continues to loop, this can cause a long loop
with I/O if i_size of the directory&apos;s inode is also corrupted, causing the
log writer thread to wait and hang, as reported by syzbot.
Fix these issues by making nilfs_empty_dir() immediately return a false
value (0) if it fails to get a directory folio/page.</Note>
</Notes>
<ReleaseDate>2024-07-26</ReleaseDate>
<CVE>CVE-2024-39469</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-24.03-LTS</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>4.7</BaseScore>
<Vector>AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-07-26</DATE>
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="15" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:xfs: fix log recovery buffer allocation for the legacy h_size fixupCommit a70f9fe52daa ( xfs: detect and handle invalid iclog size set bymkfs ) added a fixup for incorrect h_size values used for the initialumount record in old xfsprogs versions. Later commit 0c771b99d6c9( xfs: clean up calculation of LR header blocks ) cleaned up the logreover buffer calculation, but stoped using the fixed up h_size valueto size the log recovery buffer, which can lead to an out of boundsaccess when the incorrect h_size does not come from the old mkfstool, but a fuzzer.Fix this by open coding xlog_logrec_hblks and taking the fixed h_sizeinto account for this calculation.</Note>
</Notes>
<ReleaseDate>2024-07-26</ReleaseDate>
<CVE>CVE-2024-39472</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-24.03-LTS</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-07-26</DATE>
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="16" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
media: v4l: async: Properly re-initialise notifier entry in unregister
The notifier_entry of a notifier is not re-initialised after unregistering
the notifier. This leads to dangling pointers being left there so use
list_del_init() to return the notifier_entry an empty list.</Note>
</Notes>
<ReleaseDate>2024-07-26</ReleaseDate>
<CVE>CVE-2024-39485</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-24.03-LTS</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-07-26</DATE>
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="17" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
ima: Fix use-after-free on a dentry&apos;s dname.name
-&gt;d_name.name can change on rename and the earlier value can be freed;
there are conditions sufficient to stabilize it (-&gt;d_lock on dentry,
-&gt;d_lock on its parent, -&gt;i_rwsem exclusive on the parent&apos;s inode,
rename_lock), but none of those are met at any of the sites. Take a stable
snapshot of the name instead.</Note>
</Notes>
<ReleaseDate>2024-07-26</ReleaseDate>
<CVE>CVE-2024-39494</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-24.03-LTS</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>High</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>7.8</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-07-26</DATE>
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="18" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
vmci: prevent speculation leaks by sanitizing event in event_deliver()
Coverity spotted that event_msg is controlled by user-space,
event_msg-&gt;event_data.event is passed to event_deliver() and used
as an index without sanitization.
This change ensures that the event index is sanitized to mitigate any
possibility of speculative information leaks.
This bug was discovered and resolved using Coverity Static Analysis
Security Testing (SAST) by Synopsys, Inc.
Only compile tested, no access to HW.</Note>
</Notes>
<ReleaseDate>2024-07-26</ReleaseDate>
<CVE>CVE-2024-39499</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-24.03-LTS</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-07-26</DATE>
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="19" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
drm/komeda: check for error-valued pointer
komeda_pipeline_get_state() may return an error-valued pointer, thus
check the pointer for negative or null value before dereferencing.</Note>
</Notes>
<ReleaseDate>2024-07-26</ReleaseDate>
<CVE>CVE-2024-39505</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-24.03-LTS</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-07-26</DATE>
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="20" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: Fix deadlock in ieee80211_sta_ps_deliver_wakeup()
The ieee80211_sta_ps_deliver_wakeup() function takes sta-&gt;ps_lock to
synchronizes with ieee80211_tx_h_unicast_ps_buf() which is called from
softirq context. However using only spin_lock() to get sta-&gt;ps_lock in
ieee80211_sta_ps_deliver_wakeup() does not prevent softirq to execute
on this same CPU, to run ieee80211_tx_h_unicast_ps_buf() and try to
take this same lock ending in deadlock. Below is an example of rcu stall
that arises in such situation.
rcu: INFO: rcu_sched self-detected stall on CPU
rcu: 2-....: (42413413 ticks this GP) idle=b154/1/0x4000000000000000 softirq=1763/1765 fqs=21206996
rcu: (t=42586894 jiffies g=2057 q=362405 ncpus=4)
CPU: 2 PID: 719 Comm: wpa_supplicant Tainted: G W 6.4.0-02158-g1b062f552873 #742
Hardware name: RPT (r1) (DT)
pstate: 00000005 (nzcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : queued_spin_lock_slowpath+0x58/0x2d0
lr : invoke_tx_handlers_early+0x5b4/0x5c0
sp : ffff00001ef64660
x29: ffff00001ef64660 x28: ffff000009bc1070 x27: ffff000009bc0ad8
x26: ffff000009bc0900 x25: ffff00001ef647a8 x24: 0000000000000000
x23: ffff000009bc0900 x22: ffff000009bc0900 x21: ffff00000ac0e000
x20: ffff00000a279e00 x19: ffff00001ef646e8 x18: 0000000000000000
x17: ffff800016468000 x16: ffff00001ef608c0 x15: 0010533c93f64f80
x14: 0010395c9faa3946 x13: 0000000000000000 x12: 00000000fa83b2da
x11: 000000012edeceea x10: ffff0000010fbe00 x9 : 0000000000895440
x8 : 000000000010533c x7 : ffff00000ad8b740 x6 : ffff00000c350880
x5 : 0000000000000007 x4 : 0000000000000001 x3 : 0000000000000000
x2 : 0000000000000000 x1 : 0000000000000001 x0 : ffff00000ac0e0e8
Call trace:
queued_spin_lock_slowpath+0x58/0x2d0
ieee80211_tx+0x80/0x12c
ieee80211_tx_pending+0x110/0x278
tasklet_action_common.constprop.0+0x10c/0x144
tasklet_action+0x20/0x28
_stext+0x11c/0x284
____do_softirq+0xc/0x14
call_on_irq_stack+0x24/0x34
do_softirq_own_stack+0x18/0x20
do_softirq+0x74/0x7c
__local_bh_enable_ip+0xa0/0xa4
_ieee80211_wake_txqs+0x3b0/0x4b8
__ieee80211_wake_queue+0x12c/0x168
ieee80211_add_pending_skbs+0xec/0x138
ieee80211_sta_ps_deliver_wakeup+0x2a4/0x480
ieee80211_mps_sta_status_update.part.0+0xd8/0x11c
ieee80211_mps_sta_status_update+0x18/0x24
sta_apply_parameters+0x3bc/0x4c0
ieee80211_change_station+0x1b8/0x2dc
nl80211_set_station+0x444/0x49c
genl_family_rcv_msg_doit.isra.0+0xa4/0xfc
genl_rcv_msg+0x1b0/0x244
netlink_rcv_skb+0x38/0x10c
genl_rcv+0x34/0x48
netlink_unicast+0x254/0x2bc
netlink_sendmsg+0x190/0x3b4
____sys_sendmsg+0x1e8/0x218
___sys_sendmsg+0x68/0x8c
__sys_sendmsg+0x44/0x84
__arm64_sys_sendmsg+0x20/0x28
do_el0_svc+0x6c/0xe8
el0_svc+0x14/0x48
el0t_64_sync_handler+0xb0/0xb4
el0t_64_sync+0x14c/0x150
Using spin_lock_bh()/spin_unlock_bh() instead prevents softirq to raise
on the same CPU that is holding the lock.</Note>
</Notes>
<ReleaseDate>2024-07-26</ReleaseDate>
<CVE>CVE-2024-40912</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-24.03-LTS</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-07-26</DATE>
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="21" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
drm/exynos: hdmi: report safe 640x480 mode as a fallback when no EDID found
When reading EDID fails and driver reports no modes available, the DRM
core adds an artificial 1024x786 mode to the connector. Unfortunately
some variants of the Exynos HDMI (like the one in Exynos4 SoCs) are not
able to drive such mode, so report a safe 640x480 mode instead of nothing
in case of the EDID reading failure.
This fixes the following issue observed on Trats2 board since commit
13d5b040363c (&quot;drm/exynos: do not return negative values from .get_modes()&quot;):
[drm] Exynos DRM: using 11c00000.fimd device for DMA mapping operations
exynos-drm exynos-drm: bound 11c00000.fimd (ops fimd_component_ops)
exynos-drm exynos-drm: bound 12c10000.mixer (ops mixer_component_ops)
exynos-dsi 11c80000.dsi: [drm:samsung_dsim_host_attach] Attached s6e8aa0 device (lanes:4 bpp:24 mode-flags:0x10b)
exynos-drm exynos-drm: bound 11c80000.dsi (ops exynos_dsi_component_ops)
exynos-drm exynos-drm: bound 12d00000.hdmi (ops hdmi_component_ops)
[drm] Initialized exynos 1.1.0 20180330 for exynos-drm on minor 1
exynos-hdmi 12d00000.hdmi: [drm:hdmiphy_enable.part.0] *ERROR* PLL could not reach steady state
panel-samsung-s6e8aa0 11c80000.dsi.0: ID: 0xa2, 0x20, 0x8c
exynos-mixer 12c10000.mixer: timeout waiting for VSYNC
------------[ cut here ]------------
WARNING: CPU: 1 PID: 11 at drivers/gpu/drm/drm_atomic_helper.c:1682 drm_atomic_helper_wait_for_vblanks.part.0+0x2b0/0x2b8
[CRTC:70:crtc-1] vblank wait timed out
Modules linked in:
CPU: 1 PID: 11 Comm: kworker/u16:0 Not tainted 6.9.0-rc5-next-20240424 #14913
Hardware name: Samsung Exynos (Flattened Device Tree)
Workqueue: events_unbound deferred_probe_work_func
Call trace:
unwind_backtrace from show_stack+0x10/0x14
show_stack from dump_stack_lvl+0x68/0x88
dump_stack_lvl from __warn+0x7c/0x1c4
__warn from warn_slowpath_fmt+0x11c/0x1a8
warn_slowpath_fmt from drm_atomic_helper_wait_for_vblanks.part.0+0x2b0/0x2b8
drm_atomic_helper_wait_for_vblanks.part.0 from drm_atomic_helper_commit_tail_rpm+0x7c/0x8c
drm_atomic_helper_commit_tail_rpm from commit_tail+0x9c/0x184
commit_tail from drm_atomic_helper_commit+0x168/0x190
drm_atomic_helper_commit from drm_atomic_commit+0xb4/0xe0
drm_atomic_commit from drm_client_modeset_commit_atomic+0x23c/0x27c
drm_client_modeset_commit_atomic from drm_client_modeset_commit_locked+0x60/0x1cc
drm_client_modeset_commit_locked from drm_client_modeset_commit+0x24/0x40
drm_client_modeset_commit from __drm_fb_helper_restore_fbdev_mode_unlocked+0x9c/0xc4
__drm_fb_helper_restore_fbdev_mode_unlocked from drm_fb_helper_set_par+0x2c/0x3c
drm_fb_helper_set_par from fbcon_init+0x3d8/0x550
fbcon_init from visual_init+0xc0/0x108
visual_init from do_bind_con_driver+0x1b8/0x3a4
do_bind_con_driver from do_take_over_console+0x140/0x1ec
do_take_over_console from do_fbcon_takeover+0x70/0xd0
do_fbcon_takeover from fbcon_fb_registered+0x19c/0x1ac
fbcon_fb_registered from register_framebuffer+0x190/0x21c
register_framebuffer from __drm_fb_helper_initial_config_and_unlock+0x350/0x574
__drm_fb_helper_initial_config_and_unlock from exynos_drm_fbdev_client_hotplug+0x6c/0xb0
exynos_drm_fbdev_client_hotplug from drm_client_register+0x58/0x94
drm_client_register from exynos_drm_bind+0x160/0x190
exynos_drm_bind from try_to_bring_up_aggregate_device+0x200/0x2d8
try_to_bring_up_aggregate_device from __component_add+0xb0/0x170
__component_add from mixer_probe+0x74/0xcc
mixer_probe from platform_probe+0x5c/0xb8
platform_probe from really_probe+0xe0/0x3d8
really_probe from __driver_probe_device+0x9c/0x1e4
__driver_probe_device from driver_probe_device+0x30/0xc0
driver_probe_device from __device_attach_driver+0xa8/0x120
__device_attach_driver from bus_for_each_drv+0x80/0xcc
bus_for_each_drv from __device_attach+0xac/0x1fc
__device_attach from bus_probe_device+0x8c/0x90
bus_probe_device from deferred_probe_work_func+0
---truncated---</Note>
</Notes>
<ReleaseDate>2024-07-26</ReleaseDate>
<CVE>CVE-2024-40916</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-24.03-LTS</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Low</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>3.9</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:L/I:L/A:L</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-07-26</DATE>
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="22" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
parisc: Try to fix random segmentation faults in package builds
PA-RISC systems with PA8800 and PA8900 processors have had problems
with random segmentation faults for many years. Systems with earlier
processors are much more stable.
Systems with PA8800 and PA8900 processors have a large L2 cache which
needs per page flushing for decent performance when a large range is
flushed. The combined cache in these systems is also more sensitive to
non-equivalent aliases than the caches in earlier systems.
The majority of random segmentation faults that I have looked at
appear to be memory corruption in memory allocated using mmap and
malloc.
My first attempt at fixing the random faults didn&apos;t work. On
reviewing the cache code, I realized that there were two issues
which the existing code didn&apos;t handle correctly. Both relate
to cache move-in. Another issue is that the present bit in PTEs
is racy.
1) PA-RISC caches have a mind of their own and they can speculatively
load data and instructions for a page as long as there is a entry in
the TLB for the page which allows move-in. TLBs are local to each
CPU. Thus, the TLB entry for a page must be purged before flushing
the page. This is particularly important on SMP systems.
In some of the flush routines, the flush routine would be called
and then the TLB entry would be purged. This was because the flush
routine needed the TLB entry to do the flush.
2) My initial approach to trying the fix the random faults was to
try and use flush_cache_page_if_present for all flush operations.
This actually made things worse and led to a couple of hardware
lockups. It finally dawned on me that some lines weren&apos;t being
flushed because the pte check code was racy. This resulted in
random inequivalent mappings to physical pages.
The __flush_cache_page tmpalias flush sets up its own TLB entry
and it doesn&apos;t need the existing TLB entry. As long as we can find
the pte pointer for the vm page, we can get the pfn and physical
address of the page. We can also purge the TLB entry for the page
before doing the flush. Further, __flush_cache_page uses a special
TLB entry that inhibits cache move-in.
When switching page mappings, we need to ensure that lines are
removed from the cache. It is not sufficient to just flush the
lines to memory as they may come back.
This made it clear that we needed to implement all the required
flush operations using tmpalias routines. This includes flushes
for user and kernel pages.
After modifying the code to use tmpalias flushes, it became clear
that the random segmentation faults were not fully resolved. The
frequency of faults was worse on systems with a 64 MB L2 (PA8900)
and systems with more CPUs (rp4440).
The warning that I added to flush_cache_page_if_present to detect
pages that couldn&apos;t be flushed triggered frequently on some systems.
Helge and I looked at the pages that couldn&apos;t be flushed and found
that the PTE was either cleared or for a swap page. Ignoring pages
that were swapped out seemed okay but pages with cleared PTEs seemed
problematic.
I looked at routines related to pte_clear and noticed ptep_clear_flush.
The default implementation just flushes the TLB entry. However, it was
obvious that on parisc we need to flush the cache page as well. If
we don&apos;t flush the cache page, stale lines will be left in the cache
and cause random corruption. Once a PTE is cleared, there is no way
to find the physical address associated with the PTE and flush the
associated page at a later time.
I implemented an updated change with a parisc specific version of
ptep_clear_flush. It fixed the random data corruption on Helge&apos;s rp4440
and rp3440, as well as on my c8000.
At this point, I realized that I could restore the code where we only
flush in flush_cache_page_if_present if the page has been accessed.
However, for this, we also need to flush the cache when the accessed
bit is cleared in
---truncated---</Note>
</Notes>
<ReleaseDate>2024-07-26</ReleaseDate>
<CVE>CVE-2024-40918</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-24.03-LTS</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Low</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>3.9</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:L/I:L/A:L</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-07-26</DATE>
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="23" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
vmxnet3: disable rx data ring on dma allocation failure
When vmxnet3_rq_create() fails to allocate memory for rq-&gt;data_ring.base,
the subsequent call to vmxnet3_rq_destroy_all_rxdataring does not reset
rq-&gt;data_ring.desc_size for the data ring that failed, which presumably
causes the hypervisor to reference it on packet reception.
To fix this bug, rq-&gt;data_ring.desc_size needs to be set to 0 to tell
the hypervisor to disable this feature.
[ 95.436876] kernel BUG at net/core/skbuff.c:207!
[ 95.439074] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
[ 95.440411] CPU: 7 PID: 0 Comm: swapper/7 Not tainted 6.9.3-dirty #1
[ 95.441558] Hardware name: VMware, Inc. VMware Virtual
Platform/440BX Desktop Reference Platform, BIOS 6.00 12/12/2018
[ 95.443481] RIP: 0010:skb_panic+0x4d/0x4f
[ 95.444404] Code: 4f 70 50 8b 87 c0 00 00 00 50 8b 87 bc 00 00 00 50
ff b7 d0 00 00 00 4c 8b 8f c8 00 00 00 48 c7 c7 68 e8 be 9f e8 63 58 f9
ff &lt;0f&gt; 0b 48 8b 14 24 48 c7 c1 d0 73 65 9f e8 a1 ff ff ff 48 8b 14 24
[ 95.447684] RSP: 0018:ffffa13340274dd0 EFLAGS: 00010246
[ 95.448762] RAX: 0000000000000089 RBX: ffff8fbbc72b02d0 RCX: 000000000000083f
[ 95.450148] RDX: 0000000000000000 RSI: 00000000000000f6 RDI: 000000000000083f
[ 95.451520] RBP: 000000000000002d R08: 0000000000000000 R09: ffffa13340274c60
[ 95.452886] R10: ffffffffa04ed468 R11: 0000000000000002 R12: 0000000000000000
[ 95.454293] R13: ffff8fbbdab3c2d0 R14: ffff8fbbdbd829e0 R15: ffff8fbbdbd809e0
[ 95.455682] FS: 0000000000000000(0000) GS:ffff8fbeefd80000(0000) knlGS:0000000000000000
[ 95.457178] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 95.458340] CR2: 00007fd0d1f650c8 CR3: 0000000115f28000 CR4: 00000000000406f0
[ 95.459791] Call Trace:
[ 95.460515] &lt;IRQ&gt;
[ 95.461180] ? __die_body.cold+0x19/0x27
[ 95.462150] ? die+0x2e/0x50
[ 95.462976] ? do_trap+0xca/0x110
[ 95.463973] ? do_error_trap+0x6a/0x90
[ 95.464966] ? skb_panic+0x4d/0x4f
[ 95.465901] ? exc_invalid_op+0x50/0x70
[ 95.466849] ? skb_panic+0x4d/0x4f
[ 95.467718] ? asm_exc_invalid_op+0x1a/0x20
[ 95.468758] ? skb_panic+0x4d/0x4f
[ 95.469655] skb_put.cold+0x10/0x10
[ 95.470573] vmxnet3_rq_rx_complete+0x862/0x11e0 [vmxnet3]
[ 95.471853] vmxnet3_poll_rx_only+0x36/0xb0 [vmxnet3]
[ 95.473185] __napi_poll+0x2b/0x160
[ 95.474145] net_rx_action+0x2c6/0x3b0
[ 95.475115] handle_softirqs+0xe7/0x2a0
[ 95.476122] __irq_exit_rcu+0x97/0xb0
[ 95.477109] common_interrupt+0x85/0xa0
[ 95.478102] &lt;/IRQ&gt;
[ 95.478846] &lt;TASK&gt;
[ 95.479603] asm_common_interrupt+0x26/0x40
[ 95.480657] RIP: 0010:pv_native_safe_halt+0xf/0x20
[ 95.481801] Code: 22 d7 e9 54 87 01 00 0f 1f 40 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa eb 07 0f 00 2d 93 ba 3b 00 fb f4 &lt;e9&gt; 2c 87 01 00 66 66 2e 0f 1f 84 00 00 00 00 00 90 90 90 90 90 90
[ 95.485563] RSP: 0018:ffffa133400ffe58 EFLAGS: 00000246
[ 95.486882] RAX: 0000000000004000 RBX: ffff8fbbc1d14064 RCX: 0000000000000000
[ 95.488477] RDX: ffff8fbeefd80000 RSI: ffff8fbbc1d14000 RDI: 0000000000000001
[ 95.490067] RBP: ffff8fbbc1d14064 R08: ffffffffa0652260 R09: 00000000000010d3
[ 95.491683] R10: 0000000000000018 R11: ffff8fbeefdb4764 R12: ffffffffa0652260
[ 95.493389] R13: ffffffffa06522e0 R14: 0000000000000001 R15: 0000000000000000
[ 95.495035] acpi_safe_halt+0x14/0x20
[ 95.496127] acpi_idle_do_entry+0x2f/0x50
[ 95.497221] acpi_idle_enter+0x7f/0xd0
[ 95.498272] cpuidle_enter_state+0x81/0x420
[ 95.499375] cpuidle_enter+0x2d/0x40
[ 95.500400] do_idle+0x1e5/0x240
[ 95.501385] cpu_startup_entry+0x29/0x30
[ 95.502422] start_secondary+0x11c/0x140
[ 95.503454] common_startup_64+0x13e/0x141
[ 95.504466] &lt;/TASK&gt;
[ 95.505197] Modules linked in: nft_fib_inet nft_fib_ipv4
nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6
nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ip
---truncated---</Note>
</Notes>
<ReleaseDate>2024-07-26</ReleaseDate>
<CVE>CVE-2024-40923</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-24.03-LTS</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-07-26</DATE>
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="24" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mvm: check n_ssids before accessing the ssids
In some versions of cfg80211, the ssids poinet might be a valid one even
though n_ssids is 0. Accessing the pointer in this case will cuase an
out-of-bound access. Fix this by checking n_ssids first.</Note>
</Notes>
<ReleaseDate>2024-07-26</ReleaseDate>
<CVE>CVE-2024-40929</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-24.03-LTS</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-07-26</DATE>
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="25" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
drm/exynos/vidi: fix memory leak in .get_modes()
The duplicated EDID is never freed. Fix it.</Note>
</Notes>
<ReleaseDate>2024-07-26</ReleaseDate>
<CVE>CVE-2024-40932</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-24.03-LTS</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Low</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>3.9</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:L/I:L/A:L</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-07-26</DATE>
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="26" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
cxl/region: Fix memregion leaks in devm_cxl_add_region()
Move the mode verification to __create_region() before allocating the
memregion to avoid the memregion leaks.</Note>
</Notes>
<ReleaseDate>2024-07-26</ReleaseDate>
<CVE>CVE-2024-40936</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-24.03-LTS</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Low</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>3.9</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:L/I:L/A:L</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-07-26</DATE>
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="27" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mvm: don&apos;t read past the mfuart notifcation
In case the firmware sends a notification that claims it has more data
than it has, we will read past that was allocated for the notification.
Remove the print of the buffer, we won&apos;t see it by default. If needed,
we can see the content with tracing.
This was reported by KFENCE.</Note>
</Notes>
<ReleaseDate>2024-07-26</ReleaseDate>
<CVE>CVE-2024-40941</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-24.03-LTS</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-07-26</DATE>
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="28" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
ocfs2: fix races between hole punching and AIO+DIO
After commit &quot;ocfs2: return real error code in ocfs2_dio_wr_get_block&quot;,
fstests/generic/300 become from always failed to sometimes failed:
========================================================================
[ 473.293420 ] run fstests generic/300
[ 475.296983 ] JBD2: Ignoring recovery information on journal
[ 475.302473 ] ocfs2: Mounting device (253,1) on (node local, slot 0) with ordered data mode.
[ 494.290998 ] OCFS2: ERROR (device dm-1): ocfs2_change_extent_flag: Owner 5668 has an extent at cpos 78723 which can no longer be found
[ 494.291609 ] On-disk corruption discovered. Please run fsck.ocfs2 once the filesystem is unmounted.
[ 494.292018 ] OCFS2: File system is now read-only.
[ 494.292224 ] (kworker/19:11,2628,19):ocfs2_mark_extent_written:5272 ERROR: status = -30
[ 494.292602 ] (kworker/19:11,2628,19):ocfs2_dio_end_io_write:2374 ERROR: status = -3
fio: io_u error on file /mnt/scratch/racer: Read-only file system: write offset=460849152, buflen=131072
=========================================================================
In __blockdev_direct_IO, ocfs2_dio_wr_get_block is called to add unwritten
extents to a list. extents are also inserted into extent tree in
ocfs2_write_begin_nolock. Then another thread call fallocate to puch a
hole at one of the unwritten extent. The extent at cpos was removed by
ocfs2_remove_extent(). At end io worker thread, ocfs2_search_extent_list
found there is no such extent at the cpos.
T1 T2 T3
inode lock
...
insert extents
...
inode unlock
ocfs2_fallocate
__ocfs2_change_file_space
inode lock
lock ip_alloc_sem
ocfs2_remove_inode_range inode
ocfs2_remove_btree_range
ocfs2_remove_extent
^---remove the extent at cpos 78723
...
unlock ip_alloc_sem
inode unlock
ocfs2_dio_end_io
ocfs2_dio_end_io_write
lock ip_alloc_sem
ocfs2_mark_extent_written
ocfs2_change_extent_flag
ocfs2_search_extent_list
^---failed to find extent
...
unlock ip_alloc_sem
In most filesystems, fallocate is not compatible with racing with AIO+DIO,
so fix it by adding to wait for all dio before fallocate/punch_hole like
ext4.</Note>
</Notes>
<ReleaseDate>2024-07-26</ReleaseDate>
<CVE>CVE-2024-40943</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-24.03-LTS</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:A/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:L</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-07-26</DATE>
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="29" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
ocfs2: fix NULL pointer dereference in ocfs2_abort_trigger()
bdev-&gt;bd_super has been removed and commit 8887b94d9322 change the usage
from bdev-&gt;bd_super to b_assoc_map-&gt;host-&gt;i_sb. Since ocfs2 hasn&apos;t set
bh-&gt;b_assoc_map, it will trigger NULL pointer dereference when calling
into ocfs2_abort_trigger().
Actually this was pointed out in history, see commit 74e364ad1b13. But
I&apos;ve made a mistake when reviewing commit 8887b94d9322 and then
re-introduce this regression.
Since we cannot revive bdev in buffer head, so fix this issue by
initializing all types of ocfs2 triggers when fill super, and then get the
specific ocfs2 trigger from ocfs2_caching_info when access journal.
[joseph.qi@linux.alibaba.com: v2]
Link: https://lkml.kernel.org/r/20240602112045.1112708-1-joseph.qi@linux.alibaba.com</Note>
</Notes>
<ReleaseDate>2024-07-26</ReleaseDate>
<CVE>CVE-2024-40951</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-24.03-LTS</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Low</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>3.9</BaseScore>
<Vector>AV:L/AC:H/PR:H/UI:N/S:U/C:L/I:L/A:L</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-07-26</DATE>
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="30" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
ocfs2: fix NULL pointer dereference in ocfs2_journal_dirty()
bdev-&gt;bd_super has been removed and commit 8887b94d9322 change the usage
from bdev-&gt;bd_super to b_assoc_map-&gt;host-&gt;i_sb. This introduces the
following NULL pointer dereference in ocfs2_journal_dirty() since
b_assoc_map is still not initialized. This can be easily reproduced by
running xfstests generic/186, which simulate no more credits.
[ 134.351592] BUG: kernel NULL pointer dereference, address: 0000000000000000
...
[ 134.355341] RIP: 0010:ocfs2_journal_dirty+0x14f/0x160 [ocfs2]
...
[ 134.365071] Call Trace:
[ 134.365312] &lt;TASK&gt;
[ 134.365524] ? __die_body+0x1e/0x60
[ 134.365868] ? page_fault_oops+0x13d/0x4f0
[ 134.366265] ? __pfx_bit_wait_io+0x10/0x10
[ 134.366659] ? schedule+0x27/0xb0
[ 134.366981] ? exc_page_fault+0x6a/0x140
[ 134.367356] ? asm_exc_page_fault+0x26/0x30
[ 134.367762] ? ocfs2_journal_dirty+0x14f/0x160 [ocfs2]
[ 134.368305] ? ocfs2_journal_dirty+0x13d/0x160 [ocfs2]
[ 134.368837] ocfs2_create_new_meta_bhs.isra.51+0x139/0x2e0 [ocfs2]
[ 134.369454] ocfs2_grow_tree+0x688/0x8a0 [ocfs2]
[ 134.369927] ocfs2_split_and_insert.isra.67+0x35c/0x4a0 [ocfs2]
[ 134.370521] ocfs2_split_extent+0x314/0x4d0 [ocfs2]
[ 134.371019] ocfs2_change_extent_flag+0x174/0x410 [ocfs2]
[ 134.371566] ocfs2_add_refcount_flag+0x3fa/0x630 [ocfs2]
[ 134.372117] ocfs2_reflink_remap_extent+0x21b/0x4c0 [ocfs2]
[ 134.372994] ? inode_update_timestamps+0x4a/0x120
[ 134.373692] ? __pfx_ocfs2_journal_access_di+0x10/0x10 [ocfs2]
[ 134.374545] ? __pfx_ocfs2_journal_access_di+0x10/0x10 [ocfs2]
[ 134.375393] ocfs2_reflink_remap_blocks+0xe4/0x4e0 [ocfs2]
[ 134.376197] ocfs2_remap_file_range+0x1de/0x390 [ocfs2]
[ 134.376971] ? security_file_permission+0x29/0x50
[ 134.377644] vfs_clone_file_range+0xfe/0x320
[ 134.378268] ioctl_file_clone+0x45/0xa0
[ 134.378853] do_vfs_ioctl+0x457/0x990
[ 134.379422] __x64_sys_ioctl+0x6e/0xd0
[ 134.379987] do_syscall_64+0x5d/0x170
[ 134.380550] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[ 134.381231] RIP: 0033:0x7fa4926397cb
[ 134.381786] Code: 73 01 c3 48 8b 0d bd 56 38 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa b8 10 00 00 00 0f 05 &lt;48&gt; 3d 01 f0 ff ff 73 01 c3 48 8b 0d 8d 56 38 00 f7 d8 64 89 01 48
[ 134.383930] RSP: 002b:00007ffc2b39f7b8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
[ 134.384854] RAX: ffffffffffffffda RBX: 0000000000000004 RCX: 00007fa4926397cb
[ 134.385734] RDX: 00007ffc2b39f7f0 RSI: 000000004020940d RDI: 0000000000000003
[ 134.386606] RBP: 0000000000000000 R08: 00111a82a4f015bb R09: 00007fa494221000
[ 134.387476] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
[ 134.388342] R13: 0000000000f10000 R14: 0000558e844e2ac8 R15: 0000000000f10000
[ 134.389207] &lt;/TASK&gt;
Fix it by only aborting transaction and journal in ocfs2_journal_dirty()
now, and leave ocfs2_abort() later when detecting an aborted handle,
e.g. start next transaction. Also log the handle details in this case.</Note>
</Notes>
<ReleaseDate>2024-07-26</ReleaseDate>
<CVE>CVE-2024-40952</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-24.03-LTS</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-07-26</DATE>
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="31" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
seg6: fix parameter passing when calling NF_HOOK() in End.DX4 and End.DX6 behaviors
input_action_end_dx4() and input_action_end_dx6() are called NF_HOOK() for
PREROUTING hook, in PREROUTING hook, we should passing a valid indev,
and a NULL outdev to NF_HOOK(), otherwise may trigger a NULL pointer
dereference, as below:
[74830.647293] BUG: kernel NULL pointer dereference, address: 0000000000000090
[74830.655633] #PF: supervisor read access in kernel mode
[74830.657888] #PF: error_code(0x0000) - not-present page
[74830.659500] PGD 0 P4D 0
[74830.660450] Oops: 0000 [#1] PREEMPT SMP PTI
...
[74830.664953] Hardware name: Red Hat KVM, BIOS 0.5.1 01/01/2011
[74830.666569] RIP: 0010:rpfilter_mt+0x44/0x15e [ipt_rpfilter]
...
[74830.689725] Call Trace:
[74830.690402] &lt;IRQ&gt;
[74830.690953] ? show_trace_log_lvl+0x1c4/0x2df
[74830.692020] ? show_trace_log_lvl+0x1c4/0x2df
[74830.693095] ? ipt_do_table+0x286/0x710 [ip_tables]
[74830.694275] ? __die_body.cold+0x8/0xd
[74830.695205] ? page_fault_oops+0xac/0x140
[74830.696244] ? exc_page_fault+0x62/0x150
[74830.697225] ? asm_exc_page_fault+0x22/0x30
[74830.698344] ? rpfilter_mt+0x44/0x15e [ipt_rpfilter]
[74830.699540] ipt_do_table+0x286/0x710 [ip_tables]
[74830.700758] ? ip6_route_input+0x19d/0x240
[74830.701752] nf_hook_slow+0x3f/0xb0
[74830.702678] input_action_end_dx4+0x19b/0x1e0
[74830.703735] ? input_action_end_t+0xe0/0xe0
[74830.704734] seg6_local_input_core+0x2d/0x60
[74830.705782] lwtunnel_input+0x5b/0xb0
[74830.706690] __netif_receive_skb_one_core+0x63/0xa0
[74830.707825] process_backlog+0x99/0x140
[74830.709538] __napi_poll+0x2c/0x160
[74830.710673] net_rx_action+0x296/0x350
[74830.711860] __do_softirq+0xcb/0x2ac
[74830.713049] do_softirq+0x63/0x90
input_action_end_dx4() passing a NULL indev to NF_HOOK(), and finally
trigger a NULL dereference in rpfilter_mt()-&gt;rpfilter_is_loopback():
static bool
rpfilter_is_loopback(const struct sk_buff *skb,
const struct net_device *in)
{
// in is NULL
return skb-&gt;pkt_type == PACKET_LOOPBACK ||
in-&gt;flags &amp; IFF_LOOPBACK;
}</Note>
</Notes>
<ReleaseDate>2024-07-26</ReleaseDate>
<CVE>CVE-2024-40957</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-24.03-LTS</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-07-26</DATE>
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="32" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
MIPS: Octeon: Add PCIe link status check
The standard PCIe configuration read-write interface is used to
access the configuration space of the peripheral PCIe devices
of the mips processor after the PCIe link surprise down, it can
generate kernel panic caused by &quot;Data bus error&quot;. So it is
necessary to add PCIe link status check for system protection.
When the PCIe link is down or in training, assigning a value
of 0 to the configuration address can prevent read-write behavior
to the configuration space of peripheral PCIe devices, thereby
preventing kernel panic.</Note>
</Notes>
<ReleaseDate>2024-07-26</ReleaseDate>
<CVE>CVE-2024-40968</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-24.03-LTS</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-07-26</DATE>
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="33" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
powerpc/pseries: Enforce hcall result buffer validity and size
plpar_hcall(), plpar_hcall9(), and related functions expect callers to
provide valid result buffers of certain minimum size. Currently this
is communicated only through comments in the code and the compiler has
no idea.
For example, if I write a bug like this:
long retbuf[PLPAR_HCALL_BUFSIZE]; // should be PLPAR_HCALL9_BUFSIZE
plpar_hcall9(H_ALLOCATE_VAS_WINDOW, retbuf, ...);
This compiles with no diagnostics emitted, but likely results in stack
corruption at runtime when plpar_hcall9() stores results past the end
of the array. (To be clear this is a contrived example and I have not
found a real instance yet.)
To make this class of error less likely, we can use explicitly-sized
array parameters instead of pointers in the declarations for the hcall
APIs. When compiled with -Warray-bounds[1], the code above now
provokes a diagnostic like this:
error: array argument is too small;
is of size 32, callee requires at least 72 [-Werror,-Warray-bounds]
60 | plpar_hcall9(H_ALLOCATE_VAS_WINDOW, retbuf,
| ^ ~~~~~~
[1] Enabled for LLVM builds but not GCC for now. See commit
0da6e5fd6c37 (&quot;gcc: disable &apos;-Warray-bounds&apos; for gcc-13 too&quot;) and
related changes.</Note>
</Notes>
<ReleaseDate>2024-07-26</ReleaseDate>
<CVE>CVE-2024-40974</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-24.03-LTS</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-07-26</DATE>
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="34" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
platform/x86: x86-android-tablets: Unregister devices in reverse order
Not all subsystems support a device getting removed while there are
still consumers of the device with a reference to the device.
One example of this is the regulator subsystem. If a regulator gets
unregistered while there are still drivers holding a reference
a WARN() at drivers/regulator/core.c:5829 triggers, e.g.:
WARNING: CPU: 1 PID: 1587 at drivers/regulator/core.c:5829 regulator_unregister
Hardware name: Intel Corp. VALLEYVIEW C0 PLATFORM/BYT-T FFD8, BIOS BLADE_21.X64.0005.R00.1504101516 FFD8_X64_R_2015_04_10_1516 04/10/2015
RIP: 0010:regulator_unregister
Call Trace:
&lt;TASK&gt;
regulator_unregister
devres_release_group
i2c_device_remove
device_release_driver_internal
bus_remove_device
device_del
device_unregister
x86_android_tablet_remove
On the Lenovo Yoga Tablet 2 series the bq24190 charger chip also provides
a 5V boost converter output for powering USB devices connected to the micro
USB port, the bq24190-charger driver exports this as a Vbus regulator.
On the 830 (8&quot;) and 1050 (&quot;10&quot;) models this regulator is controlled by
a platform_device and x86_android_tablet_remove() removes platform_device-s
before i2c_clients so the consumer gets removed first.
But on the 1380 (13&quot;) model there is a lc824206xa micro-USB switch
connected over I2C and the extcon driver for that controls the regulator.
The bq24190 i2c-client *must* be registered first, because that creates
the regulator with the lc824206xa listed as its consumer. If the regulator
has not been registered yet the lc824206xa driver will end up getting
a dummy regulator.
Since in this case both the regulator provider and consumer are I2C
devices, the only way to ensure that the consumer is unregistered first
is to unregister the I2C devices in reverse order of in which they were
created.
For consistency and to avoid similar problems in the future change
x86_android_tablet_remove() to unregister all device types in reverse
order.</Note>
</Notes>
<ReleaseDate>2024-07-26</ReleaseDate>
<CVE>CVE-2024-40975</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-24.03-LTS</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Low</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>2.1</BaseScore>
<Vector>AV:P/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-07-26</DATE>
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="35" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7921s: fix potential hung tasks during chip recovery
During chip recovery (e.g. chip reset), there is a possible situation that
kernel worker reset_work is holding the lock and waiting for kernel thread
stat_worker to be parked, while stat_worker is waiting for the release of
the same lock.
It causes a deadlock resulting in the dumping of hung tasks messages and
possible rebooting of the device.
This patch prevents the execution of stat_worker during the chip recovery.</Note>
</Notes>
<ReleaseDate>2024-07-26</ReleaseDate>
<CVE>CVE-2024-40977</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-24.03-LTS</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-07-26</DATE>
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="36" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
tipc: force a dst refcount before doing decryption
As it says in commit 3bc07321ccc2 (&quot;xfrm: Force a dst refcount before
entering the xfrm type handlers&quot;):
&quot;Crypto requests might return asynchronous. In this case we leave the
rcu protected region, so force a refcount on the skb&apos;s destination
entry before we enter the xfrm type input/output handlers.&quot;
On TIPC decryption path it has the same problem, and skb_dst_force()
should be called before doing decryption to avoid a possible crash.
Shuang reported this issue when this warning is triggered:
[] WARNING: include/net/dst.h:337 tipc_sk_rcv+0x1055/0x1ea0 [tipc]
[] Kdump: loaded Tainted: G W --------- - - 4.18.0-496.el8.x86_64+debug
[] Workqueue: crypto cryptd_queue_worker
[] RIP: 0010:tipc_sk_rcv+0x1055/0x1ea0 [tipc]
[] Call Trace:
[] tipc_sk_mcast_rcv+0x548/0xea0 [tipc]
[] tipc_rcv+0xcf5/0x1060 [tipc]
[] tipc_aead_decrypt_done+0x215/0x2e0 [tipc]
[] cryptd_aead_crypt+0xdb/0x190
[] cryptd_queue_worker+0xed/0x190
[] process_one_work+0x93d/0x17e0</Note>
</Notes>
<ReleaseDate>2024-07-26</ReleaseDate>
<CVE>CVE-2024-40983</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-24.03-LTS</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-07-26</DATE>
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="37" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
ACPICA: Revert &quot;ACPICA: avoid Info: mapping multiple BARs. Your kernel is fine.&quot;
Undo the modifications made in commit d410ee5109a1 (&quot;ACPICA: avoid
&quot;Info: mapping multiple BARs. Your kernel is fine.&quot;&quot;). The initial
purpose of this commit was to stop memory mappings for operation
regions from overlapping page boundaries, as it can trigger warnings
if different page attributes are present.
However, it was found that when this situation arises, mapping
continues until the boundary&apos;s end, but there is still an attempt to
read/write the entire length of the map, leading to a NULL pointer
deference. For example, if a four-byte mapping request is made but
only one byte is mapped because it hits the current page boundary&apos;s
end, a four-byte read/write attempt is still made, resulting in a NULL
pointer deference.
Instead, map the entire length, as the ACPI specification does not
mandate that it must be within the same page boundary. It is
permissible for it to be mapped across different regions.</Note>
</Notes>
<ReleaseDate>2024-07-26</ReleaseDate>
<CVE>CVE-2024-40984</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-24.03-LTS</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-07-26</DATE>
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="38" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: fix UBSAN warning in kv_dpm.c
Adds bounds check for sumo_vid_mapping_entry.</Note>
</Notes>
<ReleaseDate>2024-07-26</ReleaseDate>
<CVE>CVE-2024-40987</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-24.03-LTS</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-07-26</DATE>
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="39" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
tracing: Build event generation tests only as modules
The kprobes and synth event generation test modules add events and lock
(get a reference) those event file reference in module init function,
and unlock and delete it in module exit function. This is because those
are designed for playing as modules.
If we make those modules as built-in, those events are left locked in the
kernel, and never be removed. This causes kprobe event self-test failure
as below.
[ 97.349708] ------------[ cut here ]------------
[ 97.353453] WARNING: CPU: 3 PID: 1 at kernel/trace/trace_kprobe.c:2133 kprobe_trace_self_tests_init+0x3f1/0x480
[ 97.357106] Modules linked in:
[ 97.358488] CPU: 3 PID: 1 Comm: swapper/0 Not tainted 6.9.0-g699646734ab5-dirty #14
[ 97.361556] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
[ 97.363880] RIP: 0010:kprobe_trace_self_tests_init+0x3f1/0x480
[ 97.365538] Code: a8 24 08 82 e9 ae fd ff ff 90 0f 0b 90 48 c7 c7 e5 aa 0b 82 e9 ee fc ff ff 90 0f 0b 90 48 c7 c7 2d 61 06 82 e9 8e fd ff ff 90 &lt;0f&gt; 0b 90 48 c7 c7 33 0b 0c 82 89 c6 e8 6e 03 1f ff 41 ff c7 e9 90
[ 97.370429] RSP: 0000:ffffc90000013b50 EFLAGS: 00010286
[ 97.371852] RAX: 00000000fffffff0 RBX: ffff888005919c00 RCX: 0000000000000000
[ 97.373829] RDX: ffff888003f40000 RSI: ffffffff8236a598 RDI: ffff888003f40a68
[ 97.375715] RBP: 0000000000000000 R08: 0000000000000001 R09: 0000000000000000
[ 97.377675] R10: ffffffff811c9ae5 R11: ffffffff8120c4e0 R12: 0000000000000000
[ 97.379591] R13: 0000000000000001 R14: 0000000000000015 R15: 0000000000000000
[ 97.381536] FS: 0000000000000000(0000) GS:ffff88807dcc0000(0000) knlGS:0000000000000000
[ 97.383813] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 97.385449] CR2: 0000000000000000 CR3: 0000000002244000 CR4: 00000000000006b0
[ 97.387347] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 97.389277] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 97.391196] Call Trace:
[ 97.391967] &lt;TASK&gt;
[ 97.392647] ? __warn+0xcc/0x180
[ 97.393640] ? kprobe_trace_self_tests_init+0x3f1/0x480
[ 97.395181] ? report_bug+0xbd/0x150
[ 97.396234] ? handle_bug+0x3e/0x60
[ 97.397311] ? exc_invalid_op+0x1a/0x50
[ 97.398434] ? asm_exc_invalid_op+0x1a/0x20
[ 97.399652] ? trace_kprobe_is_busy+0x20/0x20
[ 97.400904] ? tracing_reset_all_online_cpus+0x15/0x90
[ 97.402304] ? kprobe_trace_self_tests_init+0x3f1/0x480
[ 97.403773] ? init_kprobe_trace+0x50/0x50
[ 97.404972] do_one_initcall+0x112/0x240
[ 97.406113] do_initcall_level+0x95/0xb0
[ 97.407286] ? kernel_init+0x1a/0x1a0
[ 97.408401] do_initcalls+0x3f/0x70
[ 97.409452] kernel_init_freeable+0x16f/0x1e0
[ 97.410662] ? rest_init+0x1f0/0x1f0
[ 97.411738] kernel_init+0x1a/0x1a0
[ 97.412788] ret_from_fork+0x39/0x50
[ 97.413817] ? rest_init+0x1f0/0x1f0
[ 97.414844] ret_from_fork_asm+0x11/0x20
[ 97.416285] &lt;/TASK&gt;
[ 97.417134] irq event stamp: 13437323
[ 97.418376] hardirqs last enabled at (13437337): [&lt;ffffffff8110bc0c&gt;] console_unlock+0x11c/0x150
[ 97.421285] hardirqs last disabled at (13437370): [&lt;ffffffff8110bbf1&gt;] console_unlock+0x101/0x150
[ 97.423838] softirqs last enabled at (13437366): [&lt;ffffffff8108e17f&gt;] handle_softirqs+0x23f/0x2a0
[ 97.426450] softirqs last disabled at (13437393): [&lt;ffffffff8108e346&gt;] __irq_exit_rcu+0x66/0xd0
[ 97.428850] ---[ end trace 0000000000000000 ]---
And also, since we can not cleanup dynamic_event file, ftracetest are
failed too.
To avoid these issues, build these tests only as modules.</Note>
</Notes>
<ReleaseDate>2024-07-26</ReleaseDate>
<CVE>CVE-2024-41004</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-24.03-LTS</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-07-26</DATE>
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="40" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
netpoll: Fix race condition in netpoll_owner_active
KCSAN detected a race condition in netpoll:
BUG: KCSAN: data-race in net_rx_action / netpoll_send_skb
write (marked) to 0xffff8881164168b0 of 4 bytes by interrupt on cpu 10:
net_rx_action (./include/linux/netpoll.h:90 net/core/dev.c:6712 net/core/dev.c:6822)
&lt;snip&gt;
read to 0xffff8881164168b0 of 4 bytes by task 1 on cpu 2:
netpoll_send_skb (net/core/netpoll.c:319 net/core/netpoll.c:345 net/core/netpoll.c:393)
netpoll_send_udp (net/core/netpoll.c:?)
&lt;snip&gt;
value changed: 0x0000000a -&gt; 0xffffffff
This happens because netpoll_owner_active() needs to check if the
current CPU is the owner of the lock, touching napi-&gt;poll_owner
non atomically. The -&gt;poll_owner field contains the current CPU holding
the lock.
Use an atomic read to check if the poll owner is the current CPU.</Note>
</Notes>
<ReleaseDate>2024-07-26</ReleaseDate>
<CVE>CVE-2024-41005</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-24.03-LTS</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-07-26</DATE>
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="41" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:
tcp: avoid too many retransmit packets
If a TCP socket is using TCP_USER_TIMEOUT, and the other peer
retracted its window to zero, tcp_retransmit_timer() can
retransmit a packet every two jiffies (2 ms for HZ=1000),
for about 4 minutes after TCP_USER_TIMEOUT has &apos;expired&apos;.
The fix is to make sure tcp_rtx_probe0_timed_out() takes
icsk-&gt;icsk_user_timeout into account.
Before blamed commit, the socket would not timeout after
icsk-&gt;icsk_user_timeout, but would use standard exponential
backoff for the retransmits.
Also worth noting that before commit e89688e3e978 (&quot;net: tcp:
fix unexcepted socket die when snd_wnd is 0&quot;), the issue
would last 2 minutes instead of 4.</Note>
</Notes>
<ReleaseDate>2024-07-26</ReleaseDate>
<CVE>CVE-2024-41007</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-24.03-LTS</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Low</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>3.3</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-07-26</DATE>
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Remediation>
</Remediations>
</Vulnerability>
<Vulnerability Ordinal="42" xmlns="http://www.icasi.org/CVRF/schema/vuln/1.1">
<Notes>
<Note Title="Vulnerability Description" Type="General" Ordinal="1" xml:lang="en">In the Linux kernel, the following vulnerability has been resolved:bpf: Fix overrunning reservations in ringbufThe BPF ring buffer internally is implemented as a power-of-2 sized circularbuffer, with two logical and ever-increasing counters: consumer_pos is theconsumer counter to show which logical position the consumer consumed thedata, and producer_pos which is the producer counter denoting the amount ofdata reserved by all producers.Each time a record is reserved, the producer that owns the record willsuccessfully advance producer counter. In user space each time a record isread, the consumer of the data advanced the consumer counter once it finishedprocessing. Both counters are stored in separate pages so that from userspace, the producer counter is read-only and the consumer counter is read-write.One aspect that simplifies and thus speeds up the implementation of bothproducers and consumers is how the data area is mapped twice contiguouslyback-to-back in the virtual memory, allowing to not take any special measuresfor samples that have to wrap around at the end of the circular buffer dataarea, because the next page after the last data page would be first data pageagain, and thus the sample will still appear completely contiguous in virtualmemory.Each record has a struct bpf_ringbuf_hdr { u32 len; u32 pg_off; } header forbook-keeping the length and offset, and is inaccessible to the BPF program.Helpers like bpf_ringbuf_reserve() return `(void *)hdr + BPF_RINGBUF_HDR_SZ`for the BPF program to use. Bing-Jhong and Muhammad reported that it is howeverpossible to make a second allocated memory chunk overlapping with the firstchunk and as a result, the BPF program is now able to edit first chunk sheader.For example, consider the creation of a BPF_MAP_TYPE_RINGBUF map with sizeof 0x4000. Next, the consumer_pos is modified to 0x3000 /before/ a call tobpf_ringbuf_reserve() is made. This will allocate a chunk A, which is in[0x0,0x3008], and the BPF program is able to edit [0x8,0x3008]. Now, letsallocate a chunk B with size 0x3000. This will succeed because consumer_poswas edited ahead of time to pass the `new_prod_pos - cons_pos &gt; rb-&gt;mask`check. Chunk B will be in range [0x3008,0x6010], and the BPF program is ableto edit [0x3010,0x6010]. Due to the ring buffer memory layout mentionedearlier, the ranges [0x0,0x4000] and [0x4000,0x8000] point to the same datapages. This means that chunk B at [0x4000,0x4008] is chunk A s header.bpf_ringbuf_submit() / bpf_ringbuf_discard() use the header s pg_off to thenlocate the bpf_ringbuf itself via bpf_ringbuf_restore_from_rec(). Once chunkB modified chunk A s header, then bpf_ringbuf_commit() refers to the wrongpage and could cause a crash.Fix it by calculating the oldest pending_pos and check whether the rangefrom the oldest outstanding record to the newest would span beyond the ringbuffer size. If that is the case, then reject the request. We ve tested withthe ring buffer benchmark in BPF selftests (./benchs/run_bench_ringbufs.sh)before/after the fix and while it seems a bit slower on some benchmarks, itis still not significantly enough to matter.</Note>
</Notes>
<ReleaseDate>2024-07-26</ReleaseDate>
<CVE>CVE-2024-41009</CVE>
<ProductStatuses>
<Status Type="Fixed">
<ProductID>openEuler-24.03-LTS</ProductID>
</Status>
</ProductStatuses>
<Threats>
<Threat Type="Impact">
<Description>Medium</Description>
</Threat>
</Threats>
<CVSSScoreSets>
<ScoreSet>
<BaseScore>5.5</BaseScore>
<Vector>AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H</Vector>
</ScoreSet>
</CVSSScoreSets>
<Remediations>
<Remediation Type="Vendor Fix">
<Description>kernel security update</Description>
<DATE>2024-07-26</DATE>
<URL>https://www.openeuler.org/zh/security/security-bulletins/detail/?id=openEuler-SA-2024-1897</URL>
</Remediation>
</Remediations>
</Vulnerability>
</cvrfdoc>