wesnoth/src/builder.cpp
Mark de Wever c407cfb190 adds layer support for the terrain system again,
...this time using 2 32 bit values instead of 1 64 bit value tested
more than the previous version and also tested the speed
regression. The speed regression is much lower than with the 64 bit
version.
2007-03-03 15:31:22 +00:00

1061 lines
30 KiB
C++

/* $Id$ */
/*
Copyright (C) 2004 by Philippe Plantier <ayin@anathas.org>
Part of the Battle for Wesnoth Project http://www.wesnoth.org
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY.
See the COPYING file for more details.
*/
#include "global.hpp"
#include "array.hpp"
#include "builder.hpp"
#include "config.hpp"
#include "log.hpp"
#include "pathutils.hpp"
#include "terrain.hpp"
#include "util.hpp"
#include "wassert.hpp"
#include "serialization/string_utils.hpp"
#define ERR_NG LOG_STREAM(err, engine)
#define DEBUG_NG LOG_STREAM(info, engine)
const int terrain_builder::rule_image::TILEWIDTH = 72;
const int terrain_builder::rule_image::UNITPOS = 36 + 18;
const int terrain_builder::tile::BASE_Y_INTERVAL = 100000;
terrain_builder::rule_image::rule_image(int layer, int x, int y, bool global_image) :
layer(layer), basex(x), basey(y), global_image(global_image)
{}
terrain_builder::tile::tile() : last_tod("invalid_tod")
{
memset(adjacents, 0, sizeof(adjacents));
}
void terrain_builder::tile::add_image_to_cache(const std::string &tod, ordered_ri_list::const_iterator itor)
{
rule_image_variantlist::const_iterator tod_variant =
itor->second->variants.find(tod);
if(tod_variant == itor->second->variants.end())
tod_variant = itor->second->variants.find("");
if(tod_variant != itor->second->variants.end()) {
//calculate original y-value and layer from list index
int layer = itor->first / BASE_Y_INTERVAL;
int basey = itor->first % BASE_Y_INTERVAL;
if (basey < 0)
basey += BASE_Y_INTERVAL/2;
else
basey -= BASE_Y_INTERVAL/2;
if(layer < 0 || (layer == 0 && basey < rule_image::UNITPOS)) {
images_background.push_back(tod_variant->second.image);
} else {
images_foreground.push_back(tod_variant->second.image);
}
}
}
void terrain_builder::tile::rebuild_cache(const std::string &tod)
{
images_background.clear();
images_foreground.clear();
ordered_ri_list::const_iterator itor;
for(itor = images.begin(); itor != images.end(); ++itor) {
add_image_to_cache(tod, itor);
}
}
void terrain_builder::tile::clear()
{
flags.clear();
images.clear();
images_foreground.clear();
images_background.clear();
last_tod = "invalid_tod";
memset(adjacents, 0, sizeof(adjacents));
}
void terrain_builder::tilemap::reset()
{
for(std::vector<tile>::iterator it = map_.begin(); it != map_.end(); ++it)
it->clear();
}
bool terrain_builder::tilemap::on_map(const gamemap::location &loc) const
{
if(loc.x < -1 || loc.y < -1 || loc.x > x_ || loc.y > y_)
return false;
return true;
}
terrain_builder::tile& terrain_builder::tilemap::operator[](const gamemap::location &loc)
{
wassert(on_map(loc));
return map_[(loc.x+1) + (loc.y+1)*(x_+2)];
}
const terrain_builder::tile& terrain_builder::tilemap::operator[] (const gamemap::location &loc) const
{
wassert(on_map(loc));
return map_[(loc.x+1) + (loc.y+1)*(x_+2)];
}
terrain_builder::terrain_builder(const config& cfg, const config& level, const gamemap& gmap) :
map_(gmap), tile_map_(gmap.x(), gmap.y())
{
parse_config(cfg);
parse_config(level);
build_terrains();
//rebuild_terrain(gamemap::location(0,0));
}
const terrain_builder::imagelist *terrain_builder::get_terrain_at(const gamemap::location &loc,
const std::string &tod, const ADJACENT_TERRAIN_TYPE terrain_type)
{
if(!tile_map_.on_map(loc))
return NULL;
tile& tile_at = tile_map_[loc];
if(tod != tile_at.last_tod) {
tile_at.rebuild_cache(tod);
tile_at.last_tod = tod;
}
if(terrain_type == ADJACENT_BACKGROUND) {
if(!tile_at.images_background.empty())
return &tile_at.images_background;
}
if(terrain_type == ADJACENT_FOREGROUND) {
if(!tile_at.images_foreground.empty())
return &tile_at.images_foreground;
}
return NULL;
}
bool terrain_builder::update_animation(const gamemap::location &loc)
{
if(!tile_map_.on_map(loc))
return false;
imagelist& bg = tile_map_[loc].images_background;
imagelist& fg = tile_map_[loc].images_foreground;
bool changed = false;
imagelist::iterator itor = bg.begin();
for(; itor != bg.end(); ++itor) {
if(itor->need_update())
changed = true;
itor->update_last_draw_time();
}
itor = fg.begin();
for(; itor != fg.end(); ++itor) {
if(itor->need_update())
changed = true;
itor->update_last_draw_time();
}
return changed;
}
// TODO: rename this function
void terrain_builder::rebuild_terrain(const gamemap::location &loc)
{
if (tile_map_.on_map(loc)) {
tile& btile = tile_map_[loc];
// btile.images.clear();
btile.images_foreground.clear();
btile.images_background.clear();
const std::string filename =
map_.get_terrain_info(map_.get_terrain(loc)).symbol_image();
animated<image::locator> img_loc;
img_loc.add_frame(100,image::locator("terrain/" + filename + ".png"));
img_loc.start_animation(0, true);
btile.images_background.push_back(img_loc);
}
}
void terrain_builder::rebuild_all()
{
tile_map_.reset();
terrain_by_type_.clear();
terrain_by_type_border_.clear();
build_terrains();
}
bool terrain_builder::rule_valid(const building_rule &rule) const
{
//if the rule has no constraints, it is invalid
if(rule.constraints.empty())
return false;
//checks if all the images referenced by the current rule are valid.
//if not, this rule will not match.
rule_imagelist::const_iterator image;
constraint_set::const_iterator constraint;
rule_image_variantlist::const_iterator variant;
for(constraint = rule.constraints.begin();
constraint != rule.constraints.end(); ++constraint) {
for(image = constraint->second.images.begin();
image != constraint->second.images.end();
++image) {
for(variant = image->variants.begin(); variant != image->variants.end(); ++variant) {
std::string s = variant->second.image_string;
s = s.substr(0, s.find_first_of(",:"));
if(!image::exists("terrain/" + s + ".png"))
return false;
}
}
}
return true;
}
bool terrain_builder::start_animation(building_rule &rule)
{
rule_imagelist::iterator image;
constraint_set::iterator constraint;
rule_image_variantlist::iterator variant;
for(constraint = rule.constraints.begin();
constraint != rule.constraints.end(); ++constraint) {
for(image = constraint->second.images.begin();
image != constraint->second.images.end();
++image) {
for(variant = image->variants.begin(); variant != image->variants.end(); ++variant) {
animated<image::locator>::anim_description image_vector;
std::vector<std::string> items = utils::split(variant->second.image_string);
std::vector<std::string>::const_iterator itor = items.begin();
for(; itor != items.end(); ++itor) {
const std::vector<std::string>& items = utils::split(*itor, ':');
std::string str;
int time;
if(items.size() > 1) {
str = items.front();
time = atoi(items.back().c_str());
} else {
str = *itor;
time = 100;
}
if(image->global_image) {
image_vector.push_back(animated<image::locator>::frame_description(time,image::locator("terrain/" + str + ".png",constraint->second.loc)));
} else {
image_vector.push_back(animated<image::locator>::frame_description(time,image::locator("terrain/" + str + ".png")));
}
}
animated<image::locator> th(image_vector);
variant->second.image = th;
variant->second.image.start_animation(0, true);
variant->second.image.update_last_draw_time();
}
}
}
return true;
}
terrain_builder::terrain_constraint terrain_builder::rotate(const terrain_builder::terrain_constraint &constraint, int angle)
{
static const struct { int ii; int ij; int ji; int jj; } rotations[6] =
{ { 1, 0, 0, 1 }, { 1, 1, -1, 0 }, { 0, 1, -1, -1 },
{ -1, 0, 0, -1 }, { -1, -1, 1, 0 }, { 0, -1, 1, 1 } };
// The following array of matrices is intended to rotate the (x,y)
// coordinates of a point in a wesnoth hex (and wesnoth hexes are not
// regular hexes :) ).
// The base matrix for a 1-step rotation with the wesnoth tile shape
// is:
//
// r = s^-1 * t * s
//
// with s = [[ 1 0 ]
// [ 0 -sqrt(3)/2 ]]
//
// and t = [[ -1/2 sqrt(3)/2 ]
// [ -sqrt(3)/2 1/2 ]]
//
// With t being the rotation matrix (pi/3 rotation), and s a matrix
// that transforms the coordinates of the wesnoth hex to make them
// those of a regular hex.
//
// (demonstration left as an exercise for the reader)
//
// So we have
//
// r = [[ 1/2 -3/4 ]
// [ 1 1/2 ]]
//
// And the following array contains I(2), r, r^2, r^3, r^4, r^5 (with
// r^3 == -I(2)), which are the successive rotations.
static const struct {
double xx;
double xy;
double yx;
double yy;
} xyrotations[6] = {
{ 1., 0., 0., 1. },
{ 1./2. , -3./4., 1., 1./2. },
{ -1./2., -3./4., 1, -1./2.},
{ -1. , 0., 0., -1. },
{ -1./2., 3./4., -1., -1./2.},
{ 1./2. , 3./4., -1., 1./2. },
};
wassert(angle >= 0);
angle %= 6;
terrain_constraint ret = constraint;
// Vector i is going from n to s, vector j is going from ne to sw.
int vi = ret.loc.y - ret.loc.x/2;
int vj = ret.loc.x;
int ri = rotations[angle].ii * vi + rotations[angle].ij * vj;
int rj = rotations[angle].ji * vi + rotations[angle].jj * vj;
ret.loc.x = rj;
ret.loc.y = ri + (rj >= 0 ? rj/2 : (rj-1)/2);
for (rule_imagelist::iterator itor = ret.images.begin();
itor != ret.images.end(); ++itor) {
double vx, vy, rx, ry;
vx = double(itor->basex) - double(rule_image::TILEWIDTH)/2;
vy = double(itor->basey) - double(rule_image::TILEWIDTH)/2;
rx = xyrotations[angle].xx * vx + xyrotations[angle].xy * vy;
ry = xyrotations[angle].yx * vx + xyrotations[angle].yy * vy;
itor->basex = int(rx + rule_image::TILEWIDTH/2);
itor->basey = int(ry + rule_image::TILEWIDTH/2);
//std::cerr << "Rotation: from " << vx << ", " << vy << " to " << itor->basex <<
// ", " << itor->basey << "\n";
}
return ret;
}
void terrain_builder::replace_token(std::string &s, const std::string &token, const std::string &replacement)
{
size_t pos;
if(token.empty()) {
ERR_NG << "empty token in replace_token\n";
return;
}
while((pos = s.find(token)) != std::string::npos) {
s.replace(pos, token.size(), replacement);
}
}
void terrain_builder::replace_token(terrain_builder::rule_image &image, const std::string &token, const std::string &replacement)
{
rule_image_variantlist::iterator itor;
for(itor = image.variants.begin(); itor != image.variants.end(); ++itor) {
replace_token(itor->second, token, replacement);
}
}
void terrain_builder::replace_token(terrain_builder::rule_imagelist &list, const std::string &token, const std::string &replacement)
{
rule_imagelist::iterator itor;
for(itor = list.begin(); itor != list.end(); ++itor) {
replace_token(*itor, token, replacement);
}
}
void terrain_builder::replace_token(terrain_builder::building_rule &rule, const std::string &token, const std::string& replacement)
{
constraint_set::iterator cons;
for(cons = rule.constraints.begin(); cons != rule.constraints.end(); ++cons) {
//Transforms attributes
std::vector<std::string>::iterator flag;
for(flag = cons->second.set_flag.begin(); flag != cons->second.set_flag.end(); flag++) {
replace_token(*flag, token, replacement);
}
for(flag = cons->second.no_flag.begin(); flag != cons->second.no_flag.end(); flag++) {
replace_token(*flag, token, replacement);
}
for(flag = cons->second.has_flag.begin(); flag != cons->second.has_flag.end(); flag++) {
replace_token(*flag, token, replacement);
}
replace_token(cons->second.images, token, replacement);
}
//replace_token(rule.images, token, replacement);
}
terrain_builder::building_rule terrain_builder::rotate_rule(const terrain_builder::building_rule &rule,
int angle, const std::vector<std::string>& rot)
{
building_rule ret;
if(rot.size() != 6) {
ERR_NG << "invalid rotations\n";
return ret;
}
ret.location_constraints = rule.location_constraints;
ret.probability = rule.probability;
ret.precedence = rule.precedence;
constraint_set tmp_cons;
constraint_set::const_iterator cons;
for(cons = rule.constraints.begin(); cons != rule.constraints.end(); ++cons) {
const terrain_constraint &rcons = rotate(cons->second, angle);
tmp_cons[rcons.loc] = rcons;
}
// Normalize the rotation, so that it starts on a positive location
int minx = INT_MAX;
int miny = INT_MAX;
constraint_set::iterator cons2;
for(cons2 = tmp_cons.begin(); cons2 != tmp_cons.end(); ++cons2) {
minx = minimum<int>(cons2->second.loc.x, minx);
miny = minimum<int>(2*cons2->second.loc.y + (cons2->second.loc.x & 1), miny);
}
if((miny & 1) && (minx & 1) && (minx < 0))
miny += 2;
if(!(miny & 1) && (minx & 1) && (minx > 0))
miny -= 2;
for(cons2 = tmp_cons.begin(); cons2 != tmp_cons.end(); ++cons2) {
//Adjusts positions
cons2->second.loc += gamemap::location(-minx, -((miny-1)/2));
ret.constraints[cons2->second.loc] = cons2->second;
}
for(int i = 0; i < 6; ++i) {
int a = (angle+i) % 6;
std::string token = "@R";
push_back(token,'0' + i);
replace_token(ret, token, rot[a]);
}
return ret;
}
void terrain_builder::add_images_from_config(rule_imagelist& images, const config &cfg, bool global, int dx, int dy)
{
const config::child_list& cimages = cfg.get_children("image");
for(config::child_list::const_iterator img = cimages.begin(); img != cimages.end(); ++img) {
const std::string &name = (**img)["name"];
const int layer = lexical_cast_default<int>((**img)["layer"], 0);
int basex = 0, basey = 0;
if((**img)["base"].empty()) {
basex = rule_image::TILEWIDTH / 2 + dx;
basey = rule_image::TILEWIDTH / 2 + dy;
} else {
std::vector<std::string> base = utils::split((**img)["base"]);
if(base.size() >= 2) {
basex = atoi(base[0].c_str());
basey = atoi(base[1].c_str());
}
}
images.push_back(rule_image(layer, basex - dx, basey - dy, global));
// Adds the main (default) variant of the image, if present
images.back().variants.insert(std::pair<std::string, rule_image_variant>("", rule_image_variant(name,"")));
// Adds the other variants of the image
const config::child_list& variants = (**img).get_children("variant");
for(config::child_list::const_iterator variant = variants.begin();
variant != variants.end(); ++variant) {
const std::string &name = (**variant)["name"];
const std::string &tod = (**variant)["tod"];
images.back().variants.insert(std::pair<std::string, rule_image_variant>(tod, rule_image_variant(name,tod)));
}
}
}
void terrain_builder::add_constraints(
terrain_builder::constraint_set& constraints,
const gamemap::location& loc,
const t_translation::t_match& type, const config& global_images)
{
if(constraints.find(loc) == constraints.end()) {
//the terrain at the current location did not exist, so create it
constraints[loc] = terrain_constraint(loc);
}
if(!type.terrain.empty()) {
constraints[loc].terrain_types_match = type;
}
int x = loc.x * rule_image::TILEWIDTH * 3 / 4;
int y = loc.y * rule_image::TILEWIDTH + (loc.x % 2) *
rule_image::TILEWIDTH / 2;
add_images_from_config(constraints[loc].images, global_images, true, x, y);
}
void terrain_builder::add_constraints(terrain_builder::constraint_set &constraints, const gamemap::location& loc, const config& cfg, const config& global_images)
{
add_constraints(constraints, loc, t_translation::t_match(cfg["type"]), global_images);
terrain_constraint& constraint = constraints[loc];
std::vector<std::string> item_string = utils::split(cfg["set_flag"]);
constraint.set_flag.insert(constraint.set_flag.end(),
item_string.begin(), item_string.end());
item_string = utils::split(cfg["has_flag"]);
constraint.has_flag.insert(constraint.has_flag.end(),
item_string.begin(), item_string.end());
item_string = utils::split(cfg["no_flag"]);
constraint.no_flag.insert(constraint.no_flag.end(),
item_string.begin(), item_string.end());
add_images_from_config(constraint.images, cfg, false);
}
void terrain_builder::parse_mapstring(const std::string &mapstring,
struct building_rule &br, anchormap& anchors,
const config& global_images)
{
const t_translation::t_map map = t_translation::read_builder_map(mapstring);
// if there is an empty map leave directly
// determine after conversion, since a non empty
// string can return an empty map
if(map.empty()) {
return;
}
int lineno = (map[0][0] == t_translation::NONE_TERRAIN) ? 1 : 0;
int x = lineno;
int y = 0;
for(size_t y_off = 0; y_off < map.size(); ++y_off) {
for(size_t x_off = x; x_off < map[y_off].size(); ++x_off) {
const t_translation::t_letter terrain = map[y_off][x_off];
if(terrain.base == t_translation::TB_DOT) {
// Dots are simple placeholders, which do not
// represent actual terrains.
} else if (terrain.overlay != 0 ) {
anchors.insert(std::pair<int, gamemap::location>(terrain.overlay, gamemap::location(x, y)));
} else if (terrain.base == t_translation::TB_STAR) {
add_constraints(br.constraints, gamemap::location(x, y), t_translation::STAR, global_images);
} else {
ERR_NG << "Invalid terrain (" << t_translation::write_letter(terrain) << ") in builder map\n";
wassert(false);
}
x += 2;
}
if(lineno % 2 == 1) {
++y;
x = 0;
} else {
x = 1;
}
++lineno;
}
}
void terrain_builder::add_rule(building_ruleset& rules, building_rule &rule)
{
if(rule_valid(rule)) {
start_animation(rule);
rules.insert(std::pair<int, building_rule>(rule.precedence, rule));
}
}
void terrain_builder::add_rotated_rules(building_ruleset& rules, building_rule& tpl, const std::string &rotations)
{
if(rotations.empty()) {
// Adds the parsed built terrain to the list
add_rule(rules, tpl);
} else {
const std::vector<std::string>& rot = utils::split(rotations, ',');
for(size_t angle = 0; angle < rot.size(); angle++) {
building_rule rule = rotate_rule(tpl, angle, rot);
add_rule(rules, rule);
}
}
}
void terrain_builder::parse_config(const config &cfg)
{
log_scope("terrain_builder::parse_config");
//Parses the list of building rules (BRs)
const config::child_list& brs = cfg.get_children("terrain_graphics");
for(config::child_list::const_iterator br = brs.begin(); br != brs.end(); ++br) {
building_rule pbr; // Parsed Building rule
// add_images_from_config(pbr.images, **br);
if(!((**br)["x"].empty() || (**br)["y"].empty()))
pbr.location_constraints = gamemap::location(atoi((**br)["x"].c_str()), atoi((**br)["y"].c_str()));
pbr.probability = (**br)["probability"].empty() ? -1 : atoi((**br)["probability"].c_str());
pbr.precedence = (**br)["precedence"].empty() ? 0 : atoi((**br)["precedence"].c_str());
//Mapping anchor indices to anchor locations.
anchormap anchors;
// Parse the map= , if there is one (and fill the anchors list)
parse_mapstring((**br)["map"], pbr, anchors, **br);
// Parses the terrain constraints (TCs)
config::child_list tcs((*br)->get_children("tile"));
for(config::child_list::const_iterator tc = tcs.begin(); tc != tcs.end(); tc++) {
//Adds the terrain constraint to the current built
//terrain's list of terrain constraints, if it does not
//exist.
gamemap::location loc;
if((**tc)["x"].size()) {
loc.x = atoi((**tc)["x"].c_str());
}
if((**tc)["y"].size()) {
loc.y = atoi((**tc)["y"].c_str());
}
if(!(**tc)["loc"].empty()) {
std::vector<std::string> sloc = utils::split((**tc)["loc"]);
if(sloc.size() == 2) {
loc.x = atoi(sloc[0].c_str());
loc.y = atoi(sloc[1].c_str());
}
}
if(loc.valid()) {
add_constraints(pbr.constraints, loc, **tc, **br);
}
if((**tc)["pos"].size()) {
int pos = atoi((**tc)["pos"].c_str());
if(anchors.find(pos) == anchors.end()) {
LOG_STREAM(warn, engine) << "Invalid anchor!\n";
continue;
}
std::pair<anchormap::const_iterator, anchormap::const_iterator> range =
anchors.equal_range(pos);
for(; range.first != range.second; range.first++) {
loc = range.first->second;
add_constraints(pbr.constraints, loc, **tc, **br);
}
}
}
const std::string global_set_flag = (**br)["set_flag"];
const std::string global_no_flag = (**br)["no_flag"];
const std::string global_has_flag = (**br)["has_flag"];
for(constraint_set::iterator constraint = pbr.constraints.begin(); constraint != pbr.constraints.end();
constraint++) {
if(global_set_flag.size())
constraint->second.set_flag.push_back(global_set_flag);
if(global_no_flag.size())
constraint->second.no_flag.push_back(global_no_flag);
if(global_has_flag.size())
constraint->second.has_flag.push_back(global_has_flag);
}
// Handles rotations
const std::string rotations = (**br)["rotations"];
add_rotated_rules(building_rules_, pbr, rotations);
}
// debug output for the terrain rules
#if 0
std::cerr << "Built terrain rules: \n";
building_ruleset::const_iterator rule;
for(rule = building_rules_.begin(); rule != building_rules_.end(); ++rule) {
std::cerr << ">> New rule: image_background = " /* << rule->second.image_background << " , image_foreground = "<< rule->second.image_foreground */ << "\n";
for(constraint_set::const_iterator constraint = rule->second.constraints.begin();
constraint != rule->second.constraints.end(); ++constraint) {
std::cerr << ">>>> New constraint: location = (" << constraint->second.loc
<< "), terrain types = '" << t_translation::write_list(constraint->second.terrain_types) << "'\n";
std::vector<std::string>::const_iterator flag;
for(flag = constraint->second.set_flag.begin(); flag != constraint->second.set_flag.end(); ++flag) {
std::cerr << ">>>>>> Set_flag: " << *flag << "\n";
}
for(flag = constraint->second.no_flag.begin(); flag != constraint->second.no_flag.end(); ++flag) {
std::cerr << ">>>>>> No_flag: " << *flag << "\n";
}
}
}
#endif
}
bool terrain_builder::rule_matches(const terrain_builder::building_rule &rule,
const gamemap::location &loc, const int rule_index, const bool check_loc) const
{
if(rule.location_constraints.valid() && rule.location_constraints != loc) {
return false;
}
if(check_loc) {
for(constraint_set::const_iterator cons = rule.constraints.begin();
cons != rule.constraints.end(); ++cons) {
// translated location
const gamemap::location tloc = loc + cons->second.loc;
if(!tile_map_.on_map(tloc)) {
return false;
}
if(!terrain_matches(map_.get_terrain(tloc), cons->second.terrain_types_match)) {
return false;
}
}
}
if(rule.probability != -1) {
unsigned int a = (loc.x + 92872973) ^ 918273;
unsigned int b = (loc.y + 1672517) ^ 128123;
unsigned int c = (rule_index + 127390) ^ 13923787;
unsigned int random = a*b*c + a*b + b*c + a*c + a + b + c;
random %= 100;
if(random > (unsigned int)rule.probability) {
return false;
}
}
for(constraint_set::const_iterator cons = rule.constraints.begin();
cons != rule.constraints.end(); ++cons) {
const gamemap::location tloc = loc + cons->second.loc;
if(!tile_map_.on_map(tloc)) {
return false;
}
const tile& btile = tile_map_[tloc];
std::vector<std::string>::const_iterator itor;
for(itor = cons->second.no_flag.begin(); itor != cons->second.no_flag.end(); ++itor) {
//If a flag listed in "no_flag" is present, the rule does not match
if(btile.flags.find(*itor) != btile.flags.end()) {
return false;
}
}
for(itor = cons->second.has_flag.begin(); itor != cons->second.has_flag.end(); ++itor) {
//If a flag listed in "has_flag" is not present, this rule does not match
if(btile.flags.find(*itor) == btile.flags.end()) {
return false;
}
}
}
return true;
}
void terrain_builder::apply_rule(const terrain_builder::building_rule &rule, const gamemap::location &loc)
{
for(constraint_set::const_iterator constraint = rule.constraints.begin();
constraint != rule.constraints.end(); ++constraint) {
rule_imagelist::const_iterator img;
const gamemap::location tloc = loc + constraint->second.loc;
if(!tile_map_.on_map(tloc))
return;
tile& btile = tile_map_[tloc];
// We want to order the images by layer first and base-y second, so we sort by
// layer*BASE_Y_INTERVAL + BASE_Y_INTERVAL/2 + basey
// Thus, allowed values for basey are from -50000 to 49999
for(img = constraint->second.images.begin(); img != constraint->second.images.end(); ++img) {
btile.images.insert(std::pair<int, const rule_image*>(
img->layer*tile::BASE_Y_INTERVAL + tile::BASE_Y_INTERVAL/2 + img->basey, &*img));
}
// Sets flags
for(std::vector<std::string>::const_iterator itor = constraint->second.set_flag.begin();
itor != constraint->second.set_flag.end(); itor++) {
btile.flags.insert(*itor);
}
}
}
int terrain_builder::get_constraint_adjacents(const building_rule& rule, const gamemap::location& loc)
{
int res = 0;
gamemap::location adj[6];
int i;
get_adjacent_tiles(loc, adj);
for(i = 0; i < 6; ++i) {
if(rule.constraints.find(adj[i]) != rule.constraints.end()) {
res++;
}
}
return res;
}
//returns the "size" of a constraint: that is, the number of map tiles on which
//this constraint may possibly match. INT_MAX means "I don't know / all of them".
int terrain_builder::get_constraint_size(const building_rule& rule, const terrain_constraint& constraint, bool& border)
{
const t_translation::t_list& types = constraint.terrain_types_match.terrain;
if(types.empty()) {
return INT_MAX;
}
if(types.front() == t_translation::NOT) {
return INT_MAX;
}
if(std::find(types.begin(), types.end(), t_translation::STAR) != types.end()) {
return INT_MAX;
}
// as soon as the list has 1 wildcard we bail out
// it might be better to try some more testing
// before bailing out.
if(constraint.terrain_types_match.has_wildcard) {
return INT_MAX;
}
gamemap::location adj[6];
get_adjacent_tiles(constraint.loc, adj);
border = false;
//if the current constraint only applies to a non-isolated tile,
//the "border" flag can be set.
for(int i = 0; i < 6; ++i) {
if(rule.constraints.find(adj[i]) != rule.constraints.end()) {
const t_translation::t_list& atypes =
rule.constraints.find(adj[i])->second.terrain_types_match.terrain;
t_translation::t_list::const_iterator itor = types.begin();
for(; itor != types.end(); ++itor) {
if(!terrain_matches(*itor, atypes)) {
border = true;
break;
}
}
}
if(border == true) {
break;
}
}
int constraint_size = 0;
for(t_translation::t_list::const_iterator itor = types.begin();
itor != types.end(); ++itor) {
if(border) {
constraint_size += terrain_by_type_border_[*itor].size();
} else {
constraint_size += terrain_by_type_[*itor].size();
}
}
return constraint_size;
}
void terrain_builder::build_terrains()
{
log_scope("terrain_builder::build_terrains");
//builds the terrain_by_type_ cache
for(int x = -1; x <= map_.x(); ++x) {
for(int y = -1; y <= map_.y(); ++y) {
const gamemap::location loc(x,y);
const t_translation::t_letter t = map_.get_terrain(loc);
terrain_by_type_[t].push_back(loc);
gamemap::location adj[6];
int i;
bool border = false;
get_adjacent_tiles(loc, adj);
tile_map_[loc].adjacents[0] = t;
for(i = 0; i < 6; ++i) {
//updates the list of adjacents for this tile
tile_map_[loc].adjacents[i+1] = map_.get_terrain(adj[i]);
//determines if this tile is a border tile
if(map_.get_terrain(adj[i]) != t) {
border = true;
}
}
if(border)
terrain_by_type_border_[t].push_back(loc);
}
}
int rule_index = 0;
building_ruleset::const_iterator rule;
for(rule = building_rules_.begin(); rule != building_rules_.end(); ++rule) {
if (rule->second.location_constraints.valid()) {
apply_rule(rule->second, rule->second.location_constraints);
continue;
}
constraint_set::const_iterator constraint;
//find the constraint that contains the less terrain of all terrain rules.
constraint_set::const_iterator smallest_constraint;
constraint_set::const_iterator constraint_most_adjacents;
int smallest_constraint_size = INT_MAX;
int biggest_constraint_adjacent = -1;
bool smallest_constraint_border = false;
for(constraint = rule->second.constraints.begin();
constraint != rule->second.constraints.end(); ++constraint) {
bool border;
int size = get_constraint_size(rule->second, constraint->second, border);
if(size < smallest_constraint_size) {
smallest_constraint_size = size;
smallest_constraint = constraint;
smallest_constraint_border = border;
}
int nadjacents = get_constraint_adjacents(rule->second, constraint->second.loc);
if(nadjacents > biggest_constraint_adjacent) {
biggest_constraint_adjacent = nadjacents;
constraint_most_adjacents = constraint;
}
}
util::array<t_translation::t_list, 7> adjacent_types;
if(biggest_constraint_adjacent > 0) {
gamemap::location loc[7];
loc[0] = constraint_most_adjacents->second.loc;
get_adjacent_tiles(loc[0], loc+1);
for(int i = 0; i < 7; ++i) {
constraint_set::const_iterator cons = rule->second.constraints.find(loc[i]) ;
if(cons != rule->second.constraints.end()) {
adjacent_types[i] = cons->second.terrain_types_match.terrain;
} else {
adjacent_types[i] = t_translation::read_list("", -1, t_translation::T_FORMAT_STRING);
}
}
}
if(smallest_constraint_size != INT_MAX) {
const t_translation::t_list& types = smallest_constraint->second.terrain_types_match.terrain;
const gamemap::location loc = smallest_constraint->second.loc;
const gamemap::location aloc = constraint_most_adjacents->second.loc;
for(t_translation::t_list::const_iterator c = types.begin();
c != types.end(); ++c) {
const std::vector<gamemap::location>* locations;
if(smallest_constraint_border) {
locations = &terrain_by_type_border_[*c];
} else {
locations = &terrain_by_type_[*c];
}
for(std::vector<gamemap::location>::const_iterator itor = locations->begin();
itor != locations->end(); ++itor) {
if(biggest_constraint_adjacent > 0) {
const gamemap::location pos = (*itor - loc) + aloc;
if(!tile_map_.on_map(pos))
continue;
const t_translation::t_letter *adjacents = tile_map_[pos].adjacents;
int i;
for(i = 0; i < 7; ++i) {
if(!terrain_matches(adjacents[i], adjacent_types[i])) {
break;
}
}
// propagates the break
if (i < 7)
continue;
}
if(rule_matches(rule->second, *itor - loc, rule_index,
(size_t)(biggest_constraint_adjacent + 1) != rule->second.constraints.size())) {
apply_rule(rule->second, *itor - loc);
}
}
}
} else {
for(int x = -1; x <= map_.x(); ++x) {
for(int y = -1; y <= map_.y(); ++y) {
const gamemap::location loc(x,y);
if(rule_matches(rule->second, loc, rule_index, true))
apply_rule(rule->second, loc);
}
}
}
rule_index++;
}
}