wesnoth/data/ai/lua/ai_helper.lua
mattsc 06e896970d Update ai_helper library
New functions print_ts() and print_ts_delta().
Update functions find_best_move() and get_attack_combos().
Use new 1.11.2 syntax and functionality.
2013-05-02 19:57:21 -07:00

1397 lines
50 KiB
Lua

local H = wesnoth.require "lua/helper.lua"
local W = H.set_wml_action_metatable {}
local LS = wesnoth.require "lua/location_set.lua"
local ai_helper = {}
----- Debugging helper functions ------
function ai_helper.show_messages()
-- Returns true or false (hard-coded). To be used to
-- show messages if in debug mode
-- Just edit the following line (easier than trying to set WML variable)
local show_messages_flag = false
if wesnoth.game_config.debug then return show_messages_flag end
return false
end
function ai_helper.print_exec()
-- Returns true or false (hard-coded). To be used to
-- show which CA is being executed if in debug mode
-- Just edit the following line (easier than trying to set WML variable)
local print_exec_flag = false
if wesnoth.game_config.debug then return print_exec_flag end
return false
end
function ai_helper.print_eval()
-- Returns true or false (hard-coded). To be used to
-- show which CA is being evaluated if in debug mode
-- Just edit the following line (easier than trying to set WML variable)
local print_eval_flag = false
if wesnoth.game_config.debug then return print_eval_flag end
return false
end
function ai_helper.done_eval_messages(start_time, ca_name)
ca_name = ca_name or 'unknown'
local dt = wesnoth.get_time_stamp() /1000. - start_time
if ai_helper.print_eval() then
ai_helper.print_ts_delta(start_time, ' - Done evaluating ' .. ca_name .. ':')
end
if (dt >= 10) then
W.message{
speaker = 'narrator',
caption = 'Evaluation of candidate action ' .. ca_name .. ' took ' .. dt .. ' seconds',
message = 'This took a really long time (which it should not). If you can, would you mind sending us a screen grab of this situation? Thanks!'
}
end
end
function ai_helper.clear_labels()
-- Clear all labels on a map
local w,h,b = wesnoth.get_map_size()
for x = 1,w do
for y = 1,h do
W.label { x = x, y = y, text = "" }
end
end
end
function ai_helper.put_labels(map, factor)
-- Take map (location set) and put label containing 'value' onto the map
-- factor: multiply by 'factor' if set
-- print 'nan' if element exists but is not a number
factor = factor or 1
ai_helper.clear_labels()
map:iter(function(x, y, data)
local out = tonumber(data) or 'nan'
if (out ~= 'nan') then out = out * factor end
W.label { x = x, y = y, text = out }
end)
end
function ai_helper.print_ts(...)
-- Print arguments preceded by a time stamp in seconds
-- Also returns that time stamp
local ts = wesnoth.get_time_stamp() / 1000.
local arg = {...}
arg[#arg+1] = string.format('[ t = %.3f ]', ts)
print(table.unpack(arg))
return ts
end
function ai_helper.print_ts_delta(start_time, ...)
-- start_time: time stamp in seconds as returned by wesnoth.get_time_stamp / 1000.
-- Same as ai_helper.print_ts(), but also adds time elapsed since
-- the time given in the first argument (in seconds)
-- Returns time stamp as well as time elapsed
local ts = wesnoth.get_time_stamp() / 1000.
local delta = ts - start_time
local arg = {...}
arg[#arg+1] = string.format('[ t = %.3f, dt = %.3f ]', ts, delta)
print(table.unpack(arg))
return ts, delta
end
----- General functionality and maths helper functions ------
function ai_helper.got_1_11()
if not wesnoth.compare_versions then return false end
return wesnoth.compare_versions(wesnoth.game_config.version, ">=", "1.11.0")
end
function ai_helper.filter(input, condition)
-- equivalent of filter() function in Formula AI
local filtered_table = {}
for i,v in ipairs(input) do
if condition(v) then
--print(i, "true")
table.insert(filtered_table, v)
end
end
return filtered_table
end
function ai_helper.choose(input, value)
-- equivalent of choose() function in Formula AI
-- Returns element of a table with the largest 'value' (a function)
-- Also returns the max value and the index
local max_value = -9e99
local best_input = nil
local best_key = nil
for k,v in pairs(input) do
if value(v) > max_value then
max_value = value(v)
best_input = v
best_key = k
end
--print(k, value(v), max_value)
end
return best_input, max_value, best_key
end
function ai_helper.random(min, max)
-- Use this function as Lua's 'math.random' is not replay or MP safe
if not max then min, max = 1, min end
wesnoth.fire("set_variable", { name = "LUA_random", rand = string.format("%d..%d", min, max) })
local res = wesnoth.get_variable "LUA_random"
wesnoth.set_variable "LUA_random"
return res
end
function ai_helper.table_copy(t)
-- Make a copy of a table (rather than just another pointer to the same table)
local copy = {}
for k,v in pairs(t) do copy[k] = v end
return copy
end
function ai_helper.array_merge(a1, a2)
-- Merge two arrays
-- I want to do this without overwriting t1 or t2 -> create a new table
-- This only works with arrays, not general tables
local merger = {}
for i,a in pairs(a1) do table.insert(merger, a) end
for i,a in pairs(a2) do table.insert(merger, a) end
return merger
end
function ai_helper.serialize(input)
-- Convert 'input' to a string in a format corresponding to the type of the input
-- The string is all put into one line
local str = ''
if (type(input) == "number") or (type(input) == "boolean") then
str = tostring(input)
elseif type(input) == "string" then
str = string.format("%q", input)
elseif type(input) == "table" then
str = str .. "{ "
for k,v in pairs(input) do
str = str .. "[" .. ai_helper.serialize(k) .. "] = "
str = str .. ai_helper.serialize(v)
str = str .. ", "
end
str = str .. "}"
else
error("cannot serialize a " .. type(input))
end
return str
end
function ai_helper.split(str, sep)
-- Split a string into a table using the delimiter
local sep, fields = sep or ",", {}
local pattern = string.format("([^%s]+)", sep)
string.gsub(str, pattern, function(c) fields[#fields+1] = c end)
return fields
end
--------- Location set related helper functions ----------
function ai_helper.get_LS_xy(index)
-- Get the x,y coordinates from a location set index
-- For some reason, there doesn't seem to be a LS function for this
local tmp_set = LS.create()
tmp_set.values[index] = 1
local xy = tmp_set:to_pairs()[1]
return xy[1], xy[2]
end
function ai_helper.LS_of_triples(table)
-- Create a location set from a table of 3-element tables
-- Elements 1 and 2 are x,y coordinates, #3 is value to be inserted
local set = LS.create()
for k,t in pairs(table) do
set:insert(t[1], t[2], t[3])
end
return set
end
function ai_helper.to_triples(set)
local res = {}
set:iter(function(x, y, v) table.insert(res, { x, y, v }) end)
return res
end
function ai_helper.LS_random_hex(set)
-- Select a random hex from the hexes in location set 'set'
-- This seems "inelegant", but I can't come up with another way without creating an extra array
-- Return -1, -1 if set is empty
local r = ai_helper.random(set:size())
local i, xr, yr = 1, -1, -1
set:iter( function(x, y, v)
if (i == r) then xr, yr = x, y end
i = i + 1
end)
return xr, yr
end
--------- Location, position or hex related helper functions ----------
function ai_helper.find_opposite_hex_adjacent(hex, center_hex)
-- Find the hex that is opposite of 'hex' w.r.t. 'center_hex'
-- Both input hexes are of format { x, y }
-- Output: {opp_x, opp_y} -- or nil if 'hex' and 'center_hex' are not adjacent (or no opposite hex is found, e.g. for hexes on border)
-- If the two input hexes are not adjacent, return nil
if (H.distance_between(hex[1], hex[2], center_hex[1], center_hex[2]) ~= 1) then return nil end
-- Finding the opposite x position is easy
local opp_x = center_hex[1] + (center_hex[1] - hex[1])
-- y is slightly more tricky, because of the hexagonal shape, but there's a neat trick
-- that saves us from having to build in a lot of if statements
-- Among the adjacent hexes, it is the one with the correct x, and y _different_ from hex[2]
for x, y in H.adjacent_tiles(center_hex[1], center_hex[2]) do
if (x == opp_x) and (y ~= hex[2]) then return { x, y } end
end
return nil
end
function ai_helper.find_opposite_hex(hex, center_hex)
-- Find the hex that is opposite of 'hex' w.r.t. 'center_hex'
-- Using "square coordinate" method by JaMiT
-- Note: this also works for non-adjacent hexes, but might return hexes that are not on the map!
-- Both input hexes are of format { x, y }
-- Output: {opp_x, opp_y}
-- Finding the opposite x position is easy
local opp_x = center_hex[1] + (center_hex[1] - hex[1])
-- Going to "square geometry" for y coordinate
local y_sq = hex[2] * 2 - (hex[1] % 2)
local yc_sq = center_hex[2] * 2 - (center_hex[1] % 2)
-- Now the same equation as for x can be used for y
local opp_y = yc_sq + (yc_sq - y_sq)
opp_y = math.floor((opp_y + 1) / 2)
return {opp_x, opp_y}
end
function ai_helper.is_opposite_adjacent(hex1, hex2, center_hex)
-- Returns true if 'hex1' and 'hex2' are opposite from each other w.r.t center_hex
local opp_hex = ai_helper.find_opposite_hex_adjacent(hex1, center_hex)
if opp_hex and (opp_hex[1] == hex2[1]) and (opp_hex[2] == hex2[2]) then return true end
return false
end
function ai_helper.get_closest_location(hex, location_filter, unit)
-- Get the location closest to 'hex' (in format { x, y })
-- that matches 'location_filter' (in WML table format)
-- A unit can be passed as an optional third parameter, in which case the
-- terrain needs to be passable for that unit
-- Returns nil if no terrain matching the filter was found
-- Find the maximum distance from 'hex' that's possible on the map
local max_distance = 0
local width, height = wesnoth.get_map_size()
local to_top_left = H.distance_between(hex[1], hex[2], 0, 0)
if (to_top_left > max_distance) then max_distance = to_top_left end
local to_top_right = H.distance_between(hex[1], hex[2], width+1, 0)
if (to_top_right > max_distance) then max_distance = to_top_right end
local to_bottom_left = H.distance_between(hex[1], hex[2], 0, height+1)
if (to_bottom_left > max_distance) then max_distance = to_bottom_left end
local to_bottom_right = H.distance_between(hex[1], hex[2], width+1, height+1)
if (to_bottom_right > max_distance) then max_distance = to_bottom_right end
--print(max_distance)
local radius = 0
while (radius <= max_distance) do
local loc_filter = {}
if (radius == 0) then
loc_filter = {
{ "and", { x = hex[1], y = hex[2], radius = radius } },
}
else
loc_filter = {
{ "and", { x = hex[1], y = hex[2], radius = radius } },
{ "not", { x = hex[1], y = hex[2], radius = radius - 1 } },
}
end
for k,v in pairs(location_filter) do loc_filter[k] = v end
local locs = wesnoth.get_locations(loc_filter)
if unit then
for i,l in ipairs(locs) do
local movecost = wesnoth.unit_movement_cost(unit, wesnoth.get_terrain(l[1], l[2]))
if (movecost < 99) then return l end
end
else
if locs[1] then return locs[1] end
end
radius = radius + 1
end
return nil
end
function ai_helper.get_passable_locations(location_filter, unit)
-- Finds all locations matching 'location_filter' that are passable for
-- 'unit'. This also excludes hexes on the map border.
-- 'unit' is optional: if omitted, all hexes matching the filter, but
-- excluding border hexes are returned
-- All hexes that are not on the map border
local width, height = wesnoth.get_map_size()
local all_locs = wesnoth.get_locations{
x = '1-' .. width,
y = '1-' .. height,
{ "and", location_filter }
}
-- If 'unit' is provided, exclude terrain that's impassable for the unit
-- table.delete() can be slow for large arrays -> build a new table
if unit then
local locs = {}
for i,l in ipairs(all_locs) do
local movecost = wesnoth.unit_movement_cost(unit, wesnoth.get_terrain(l[1], l[2]))
if (movecost < 99) then table.insert(locs, l) end
end
return locs
end
return all_locs
end
function ai_helper.distance_map(units, map)
-- Get the distance map for all units in 'units' (as a location set)
-- DM = sum ( distance_from_unit )
-- This is done for all elements of 'map' (a locations set), or for the entire map if 'map' is not given
local DM = LS.create()
if map then
map:iter(function(x, y, data)
local dist = 0
for i,u in ipairs(units) do
dist = dist + H.distance_between(u.x, u.y, x, y)
end
DM:insert(x, y, dist)
end)
else
local w,h,b = wesnoth.get_map_size()
for x = 1,w do
for y = 1,h do
local dist = 0
for i,u in ipairs(units) do
dist = dist + H.distance_between(u.x, u.y, x, y)
end
DM:insert(x, y, dist)
end
end
end
--ai_helper.put_labels(DM)
--W.message {speaker="narrator", message="Distance map" }
return DM
end
function ai_helper.inverse_distance_map(units, map)
-- Get the inverse distance map for all units in 'units' (as a location set)
-- IDM = sum ( 1 / (distance_from_unit+1) )
-- This is done for all elements of 'map' (a locations set), or for the entire map if 'map' is not given
local IDM = LS.create()
if map then
map:iter(function(x, y, data)
local dist = 0
for i,u in ipairs(units) do
dist = dist + 1. / (H.distance_between(u.x, u.y, x, y) + 1)
end
IDM:insert(x, y, dist)
end)
else
local w,h,b = wesnoth.get_map_size()
for x = 1,w do
for y = 1,h do
local dist = 0
for i,u in ipairs(units) do
dist = dist + 1. / (H.distance_between(u.x, u.y, x, y) + 1)
end
IDM:insert(x, y, dist)
end
end
end
--ai_helper.put_labels(IDM)
--W.message {speaker="narrator", message="Inverse distance map" }
return IDM
end
function ai_helper.generalized_distance(x1, y1, x2, y2)
-- determines "distance of (x1,y1) from (x2,y2) even if
-- x2 and y2 are not necessarily both given (or not numbers)
-- Return 0 if neither is given
if (not x2) and (not y2) then return 0 end
-- If only one of the parameters is set
if (not x2) then return math.abs(y1 - y2) end
if (not y2) then return math.abs(x1 - x2) end
-- Otherwise, return standard distance
return H.distance_between(x1, y1, x2, y2)
end
function ai_helper.xyoff(x, y, ori, hex)
-- Finds hexes at a certain offset from x,y
-- ori: direction/orientation: north (0), ne (1), se (2), s (3), sw (4), nw (5)
-- hex: string for the hex to be queried. Possible values:
-- 's': self, 'u': up, 'lu': left up, 'ld': left down, 'ru': right up, 'rd': right down
-- This is all relative "looking" in the direction of 'ori'
-- returns x,y for the queried hex
-- Unlike Lua default, we count 'ori' from 0 (north) to 5 (nw), so that modulo operator can be used
ori = ori % 6
if (hex == 's') then return x, y end
-- This is all done with ifs, to keep it as fast as possible
if (ori == 0) then -- "north"
if (hex == 'u') then return x, y-1 end
if (hex == 'd') then return x, y+1 end
local dy = 0
if (x % 2) == 1 then dy=1 end
if (hex == 'lu') then return x-1, y-dy end
if (hex == 'ld') then return x-1, y+1-dy end
if (hex == 'ru') then return x+1, y-dy end
if (hex == 'rd') then return x+1, y+1-dy end
end
if (ori == 1) then -- "north-east"
local dy = 0
if (x % 2) == 1 then dy=1 end
if (hex == 'u') then return x+1, y-dy end
if (hex == 'd') then return x-1, y+1-dy end
if (hex == 'lu') then return x, y-1 end
if (hex == 'ld') then return x-1, y-dy end
if (hex == 'ru') then return x+1, y+1-dy end
if (hex == 'rd') then return x, y+1 end
end
if (ori == 2) then -- "south-east"
local dy = 0
if (x % 2) == 1 then dy=1 end
if (hex == 'u') then return x+1, y+1-dy end
if (hex == 'd') then return x-1, y-dy end
if (hex == 'lu') then return x+1, y-dy end
if (hex == 'ld') then return x, y-1 end
if (hex == 'ru') then return x, y+1 end
if (hex == 'rd') then return x-1, y+1-dy end
end
if (ori == 3) then -- "south"
if (hex == 'u') then return x, y+1 end
if (hex == 'd') then return x, y-1 end
local dy = 0
if (x % 2) == 1 then dy=1 end
if (hex == 'lu') then return x+1, y+1-dy end
if (hex == 'ld') then return x+1, y-dy end
if (hex == 'ru') then return x-1, y+1-dy end
if (hex == 'rd') then return x-1, y-dy end
end
if (ori == 4) then -- "south-west"
local dy = 0
if (x % 2) == 1 then dy=1 end
if (hex == 'u') then return x-1, y+1-dy end
if (hex == 'd') then return x+1, y-dy end
if (hex == 'lu') then return x, y+1 end
if (hex == 'ld') then return x+1, y+1-dy end
if (hex == 'ru') then return x-1, y-dy end
if (hex == 'rd') then return x, y-1 end
end
if (ori == 5) then -- "north-west"
local dy = 0
if (x % 2) == 1 then dy=1 end
if (hex == 'u') then return x-1, y-dy end
if (hex == 'd') then return x+1, y+1-dy end
if (hex == 'lu') then return x-1, y+1-dy end
if (hex == 'ld') then return x, y+1 end
if (hex == 'ru') then return x, y-1 end
if (hex == 'rd') then return x+1, y-dy end
end
return
end
function ai_helper.split_location_list_to_strings(list)
-- Convert a list of locations as returned by wesnoth.get_locations into a pair of strings
-- suitable for passing in as x,y coordinate lists to wesnoth.get_locations.
-- Could alternatively convert to a WML table and use the find_in argument, but this is simpler.
local locsx, locsy = {}, {}
for i,loc in ipairs(list) do
locsx[i] = loc[1]
locsy[i] = loc[2]
end
locsx = table.concat(locsx, ",")
locsy = table.concat(locsy, ",")
return locsx, locsy
end
--------- Unit related helper functions ----------
function ai_helper.get_live_units(filter)
-- Same as wesnoth.get_units(), except that it only returns non-petrified units
filter = filter or {}
-- So that 'filter' in calling function is not modified (if it's a variable):
local live_filter = ai_helper.table_copy(filter)
local filter_not_petrified = { "not", {
{ "filter_wml", {
{ "status", { petrified = "yes" } }
} }
} }
-- Combine the two filters. Doing it this way around is much easier (always works, no ifs required),
-- but it means we need to make a copy of the filter above, so that the original does not get changed
table.insert(live_filter, filter_not_petrified)
return wesnoth.get_units(live_filter)
end
function ai_helper.get_closest_enemy(loc)
-- Get the closest enemy to loc, or the leader if loc not specified
local x, y
local enemies = ai_helper.get_live_units {
{ "filter_side", { { "enemy_of", {side = wesnoth.current.side} } } }
}
if not loc then
local leader = wesnoth.get_units { side = wesnoth.current.side, canrecruit = 'yes' }[1]
x = leader.x
y = leader.y
else
x = loc[1]
y = loc[2]
end
local closest_distance, location = 9e99, {}
for i,u in ipairs(enemies) do
enemy_distance = H.distance_between(x, y, u.x, u.y)
if enemy_distance < closest_distance then
closest_distance = enemy_distance
location = { x = u.x, y = u.y}
end
end
return closest_distance, location
end
function ai_helper.has_ability(unit, ability)
-- Returns true/false depending on whether unit has the given ability
local has_ability = false
local abilities = H.get_child(unit.__cfg, "abilities")
if abilities then
if H.get_child(abilities, ability) then has_ability = true end
end
return has_ability
end
function ai_helper.has_weapon_special(unit, special)
-- Returns true/false depending on whether unit has a weapon with the given special
-- Also returns the number of the first poisoned weapon
local weapon_number = 0
for att in H.child_range(unit.__cfg, 'attack') do
weapon_number = weapon_number + 1
for sp in H.child_range(att, 'specials') do
if H.get_child(sp, special) then
return true, weapon_number
end
end
end
return false
end
function ai_helper.get_cheapest_recruit_cost()
local cheapest_unit_cost = 9e99
for i, recruit_id in ipairs(wesnoth.sides[wesnoth.current.side].recruit) do
if wesnoth.unit_types[recruit_id].cost < cheapest_unit_cost then
cheapest_unit_cost = wesnoth.unit_types[recruit_id].cost
end
end
return cheapest_unit_cost
end
--------- Move related helper functions ----------
ai_helper.no_path = 42424242 -- Value returned by engine for distance when no path is found
function ai_helper.get_dst_src_units(units, cfg)
-- Get the dst_src LS for 'units'
-- cfg: configuration table
-- - moves: if set to 'max' use max_moves of units, rather than current moves
local max_moves = false
if cfg then
if (cfg['moves'] == 'max') then max_moves = true end
end
local dstsrc = LS.create()
for i,u in ipairs(units) do
-- If {moves = 'max} is set
local tmp = u.moves
if max_moves then
u.moves = u.max_moves
end
local reach = wesnoth.find_reach(u)
if max_moves then
u.moves = tmp
end
for j,r in ipairs(reach) do
local tmp = dstsrc:get(r[1], r[2]) or {}
table.insert(tmp, { x = u.x, y = u.y })
dstsrc:insert(r[1], r[2], tmp)
end
end
return dstsrc
end
function ai_helper.get_dst_src(units)
-- Produces the same output as ai.get_dst_src() (available in 1.11.0)
-- If units is given, use them, otherwise do it for all units on the current side
local my_units = {}
if units then
my_units = units
else
my_units = wesnoth.get_units { side = wesnoth.current.side }
end
return ai_helper.get_dst_src_units(my_units)
end
function ai_helper.get_enemy_dst_src()
-- Produces the same output as ai.get_enemy_dst_src() (available in 1.11.0)
local enemies = wesnoth.get_units {
{ "filter_side", { { "enemy_of", { side = wesnoth.current.side} } } }
}
return ai_helper.get_dst_src_units(enemies, { moves = 'max' })
end
function ai_helper.my_moves()
-- Produces a table with each (numerical) field of form:
-- [1] = { dst = { x = 7, y = 16 },
-- src = { x = 6, y = 16 } }
local dstsrc = ai.get_dstsrc()
local my_moves = {}
for key,value in pairs(dstsrc) do
--print("src: ",value[1].x,value[1].y," -- dst: ",key.x,key.y)
table.insert( my_moves,
{ src = { x = value[1].x , y = value[1].y },
dst = { x = key.x , y = key.y }
}
)
end
return my_moves
end
function ai_helper.enemy_moves()
-- Produces a table with each (numerical) field of form:
-- [1] = { dst = { x = 7, y = 16 },
-- src = { x = 6, y = 16 } }
local dstsrc = ai.get_enemy_dstsrc()
local enemy_moves = {}
for key,value in pairs(dstsrc) do
--print("src: ",value[1].x,value[1].y," -- dst: ",key.x,key.y)
table.insert( enemy_moves,
{ src = { x = value[1].x , y = value[1].y },
dst = { x = key.x , y = key.y }
}
)
end
return enemy_moves
end
function ai_helper.next_hop(unit, x, y, cfg)
-- Finds the next "hop" of 'unit' on its way to (x,y)
-- Returns coordinates of the endpoint of the hop (or nil if no path to
-- (x,y) is found for the unit), and movement cost to get there
-- only unoccupied hexes are considered
-- cfg: standard extra options for wesnoth.find_path()
-- plus:
-- ignore_own_units: if set to true, then own units that can move out of the way are ignored
local path, cost = wesnoth.find_path(unit, x, y, cfg)
-- If unit cannot get there:
if cost >= ai_helper.no_path then return nil, cost end
-- If none of the hexes are unoccupied, use current position as default
local next_hop, nh_cost = { unit.x, unit.y }, 0
-- Go through loop to find reachable, unoccupied hex along the path
-- Start at second index, as first is just the unit position itself
for i = 2,#path do
local sub_path, sub_cost = wesnoth.find_path( unit, path[i][1], path[i][2], cfg)
if sub_cost <= unit.moves then
local unit_in_way = wesnoth.get_unit(path[i][1], path[i][2])
-- If ignore_own_units is set, ignore own side units that can move out of the way
if cfg and cfg.ignore_own_units then
if unit_in_way and (unit_in_way.side == unit.side) then
local reach = ai_helper.get_reachable_unocc(unit_in_way)
if (reach:size() > 1) then unit_in_way = nil end
end
end
if not unit_in_way then
next_hop, nh_cost = path[i], sub_cost
end
else
break
end
end
return next_hop, nh_cost
end
function ai_helper.can_reach(unit, x, y, cfg)
-- Returns true if unit can reach (x,y), else false
-- This only returns true if the hex is unoccupied, or at most occupied by unit on same side as 'unit'
-- that can move away (can be modified with options below)
-- cfg:
-- moves = 'max' use max_moves instead of current moves
-- ignore_units: if true, ignore both own and enemy units
-- exclude_occupied: if true, exclude hex if there's a unit there, irrespective of value of 'ignore_units'
-- If 'cfg' is not set, we need it as an empty array
cfg = cfg or {}
-- Is there a unit at the goal hex?
local unit_in_way = wesnoth.get_unit(x, y)
-- If there is, and 'exclude_occupied' is set, always return false
if (cfg.exclude_occupied) and unit_in_way then return false end
-- Otherwise, if 'ignore_units' is not set, return false if there's a unit of other side,
-- or a unit of own side that cannot move away (this might be slow, don't know)
if (not cfg.ignore_units) then
-- If there's a unit at the goal that's not on own side (even ally), return false
if unit_in_way and (unit_in_way.side ~= unit.side) then return false end
-- If the unit in the way is on 'unit's' side and cannot move away, also return false
if unit_in_way and (unit_in_way.side == unit.side) then
-- need to pass the cfg here so that it works for enemy units (generally with no moves left) also
local move_away = ai_helper.get_reachable_unocc(unit_in_way, cfg)
if (move_away:size() <= 1) then return false end
end
end
-- After all that, test whether our unit can actually get there
-- Set moves to max_moves, if { moves = 'max' } is set
local old_moves = unit.moves
if (cfg.moves == 'max') then unit.moves = unit.max_moves end
local can_reach = false
local path, cost = wesnoth.find_path(unit, x, y, cfg)
if (cost <= unit.moves) then can_reach = true end
-- Reset moves
unit.moves = old_moves
return can_reach
end
function ai_helper.get_reachable_unocc(unit, cfg)
-- Get all reachable hexes for unit that are unoccupied (incl. by allied units)
-- Returned array is a location set, with value = 1 for each reachable hex
-- cfg: parameters to wesnoth.find_reach, such as { additional_turns = 1 }
-- additional, { moves = 'max' } can be set inside cfg, which sets unit MP to max_moves before calculation
local old_moves = unit.moves
if cfg then
if (cfg.moves == 'max') then unit.moves = unit.max_moves end
end
local reach = LS.create()
local initial_reach = wesnoth.find_reach(unit, cfg)
for i,loc in ipairs(initial_reach) do
local unit_in_way = wesnoth.get_unit(loc[1], loc[2])
if not unit_in_way then
reach:insert(loc[1], loc[2], 1)
end
end
-- Also need to include the hex the unit is on itself
reach:insert(unit.x, unit.y, 1)
-- Reset unit moves (can be done whether it was changed or not)
unit.moves = old_moves
return reach
end
function ai_helper.find_best_move(units, rating_function, cfg)
-- Find the best move and best unit based on 'rating_function'
-- INPUTS:
-- units: single unit or table of units
-- rating_function: function(x, y) with rating function for the hexes the unit can reach
-- cfg: table with elements
-- labels: if set, put labels with ratings onto map
-- no_random: if set, do not add random value between 0.0001 and 0.0099 to each hex
-- (otherwise that's the default)
-- OUTPUTS:
-- best_hex: format { x, y }
-- best_unit: unit for which this rating function produced the maximum value
-- max_rating: the rating found for this hex/unit combination
-- If no valid moves were found, best_unit and best_hex are empty arrays
-- If 'cfg' is not set, we need it as an empty array
cfg = cfg or {}
-- If this is an individual unit, turn it into an array
if units.hitpoints then units = { units } end
local max_rating, best_hex, best_unit = -9e99, {}, {}
for i,u in ipairs(units) do
-- Hexes each unit can reach
local reach_map = ai_helper.get_reachable_unocc(u)
reach_map:iter( function(x, y, v)
-- Rate based on rating_function argument
local rating = rating_function(x, y)
-- If cfg.random is set, add some randomness (on 0.0001 - 0.0099 level)
if (not cfg.no_random) then rating = rating + ai_helper.random(99) / 10000. end
-- If cfg.labels is set: insert values for label map
if cfg.labels then reach_map:insert(x, y, rating) end
if rating > max_rating then
max_rating, best_hex, best_unit = rating, { x, y }, u
end
end)
if cfg.labels then ai_helper.put_labels(reach_map) end
end
return best_hex, best_unit, max_rating
end
function ai_helper.move_unit_out_of_way(ai, unit, cfg)
-- Find best close location to move unit to
-- Main rating is the moves the unit still has left after that
-- Other, configurable, parameters are given to function in 'cfg':
-- - dx, dy: the direction in which moving out of the way is preferred
-- - labels: if set, display labels of the rating for each hex the unit can reach
cfg = cfg or {}
local reach = wesnoth.find_reach(unit)
local reach_map = LS.create()
local max_rating, best_hex = -9e99, {}
for i,r in ipairs(reach) do
local unit_in_way = wesnoth.get_unit(r[1], r[2])
if (not unit_in_way) then -- also excludes current hex
local rating = r[3] -- also disfavors hexes next to enemy units for which r[3] = 0
if cfg.dx then rating = rating + (r[1] - unit.x) * cfg.dx end
if cfg.dy then rating = rating + (r[2] - unit.y) * cfg.dy end
if cfg.labels then reach_map:insert(r[1], r[2], rating) end
if (rating > max_rating) then
max_rating, best_hex = rating, { r[1], r[2] }
end
end
end
if cfg.labels then ai_helper.put_labels(reach_map) end
if (max_rating > -9e99) then
--W.message { speaker = unit.id, message = 'Moving out of way' }
ai.move(unit, best_hex[1], best_hex[2])
end
end
function ai_helper.movefull_stopunit(ai, unit, x, y)
-- Does ai.move_full for a unit if not at (x,y), otherwise ai.stopunit_moves
-- Uses ai_helper.next_hop(), so that it works if unit cannot get there in one move
-- Coordinates can be given as x and y components, or as a 2-element table { x, y }
if (type(x) ~= 'number') then
if x[1] then
x, y = x[1], x[2]
else
x, y = x.x, x.y
end
end
local next_hop = ai_helper.next_hop(unit, x, y)
if next_hop and ((next_hop[1] ~= unit.x) or (next_hop[2] ~= unit.y)) then
ai.move_full(unit, next_hop[1], next_hop[2])
else
ai.stopunit_moves(unit)
end
end
function ai_helper.movefull_outofway_stopunit(ai, unit, x, y, cfg)
-- Same as ai_help.movefull_stopunit(), but also moves unit out of way if there is one
-- Additional input: cfg for ai_helper.move_unit_out_of_way()
if (type(x) ~= 'number') then
if x[1] then
x, y = x[1], x[2]
else
x, y = x.x, x.y
end
end
-- Only move unit out of way if the main unit can get there
local path, cost = wesnoth.find_path(unit, x, y)
if (cost <= unit.moves) then
local unit_in_way = wesnoth.get_unit(x, y)
if unit_in_way and ((unit_in_way.x ~= unit.x) or (unit_in_way.y ~= unit.y)) then
--W.message { speaker = 'narrator', message = 'Moving out of way' }
ai_helper.move_unit_out_of_way(ai, unit_in_way, cfg)
end
end
local next_hop = ai_helper.next_hop(unit, x, y)
if next_hop and ((next_hop[1] ~= unit.x) or (next_hop[2] ~= unit.y)) then
ai.move_full(unit, next_hop[1], next_hop[2])
else
ai.stopunit_moves(unit)
end
end
---------- Attack related helper functions --------------
function ai_helper.get_attacks_unit(unit, cfg)
-- Get all attacks a unit can do
-- This includes a variety of configurable options, passed in the 'cfg' table
-- cfg: table with config parameters
-- moves: "current" (default for units on current side) or "max" (always used for units on other sides)
-- include_occupied (false): if set, also include hexes occupied by own-side units that can move away
-- simulate_combat (false): if set, also simulate the combat and return result (this is slow; only set if needed)
-- Returns {} if no attacks can be done, otherwise table with fields
-- dst: { x = x, y = y } of attack position
-- src: { x = x, y = y } of attacking unit (don't use id, could be ambiguous)
-- target: { x = x, y = y } of defending unit
-- att_stats, def_stats: as returned by wesnoth.simulate_combat (if cfg.simulate_combat is set)
-- attack_hex_occupied: boolean storing whether an own unit that can move away is on the attack hex
cfg = cfg or {}
-- 'moves' can be either "current" or "max"
-- For unit on current side: use "current" by default, or override by cfg.moves
local moves = cfg.moves or "current"
-- For unit on any other side, only moves="max" makes sense
if (unit.side ~= wesnoth.current.side) then moves = "max" end
-- Need to find reachable hexes that are
-- 1. next to a (non-petrified) enemy unit
-- 2. not occupied by a unit of a different side (incl. allies)
W.store_reachable_locations {
{ "filter", { x = unit.x, y = unit.y } },
{ "filter_location", {
{ "filter_adjacent_location", {
{ "filter", {
{ "filter_side",
{ { "enemy_of", { side = unit.side } } }
},
{ "not", {
{ "filter_wml", {
{ "status", { petrified = "yes" } } -- This is important!
} }
} }
} }
} },
{ "not", {
{ "filter", { { "not", { side = unit.side } } } }
} }
} },
moves = moves,
variable = "tmp_locs"
}
local attack_loc = H.get_variable_array("tmp_locs")
W.clear_variable { name = "tmp_locs" }
--print("reachable attack locs:", unit.id, #attack_loc)
-- Variable to store attacks
local attacks = {}
-- Current position of unit
local x1, y1 = unit.x, unit.y
-- Go through all attack locations
for i,p in pairs(attack_loc) do
-- At this point, units on the side of 'unit' can still be at the attack hex.
-- By default, exclude those hexes, but if 'include_occupied' is set
-- units that can move away are fine
-- Flag whether a potential unit_in_way can move away
-- We also set this to true if there is no unit in the way
local can_move_away = true
local unit_in_way = wesnoth.get_unit(p.x, p.y)
-- If unit_in_way is the unit itself, that doesn't count
if unit_in_way and (unit_in_way.x == unit.x) and (unit_in_way.y == unit.y) then unit_in_way = nil end
-- If there's a unit_in_way, and it is not the unit itself, check whether it can move away
if unit_in_way then
if (not cfg.include_occupied) then
can_move_away = false
else
local move_away = ai_helper.get_reachable_unocc(unit_in_way, { moves = moves })
if (move_away:size() <= 1) then can_move_away = false end
--print('Can move away:', unit_in_way.id, can_move_away)
end
end
-- Now can_move_away = true if there's no unit, or if it can move away
if can_move_away then
-- Put 'unit' at this position
-- Remove any unit that might be there first, except if this is the unit itself
if unit_in_way then wesnoth.extract_unit(unit_in_way) end
wesnoth.put_unit(p.x, p.y, unit)
--print(i,' attack pos:',p.x,p.y)
-- As there might be several attackable units from a position, need to find all those
local targets = wesnoth.get_units {
{ "filter_side",
{ { "enemy_of", { side = unit.side } } }
},
{ "not", {
{ "filter_wml", {
{ "status", { petrified = "yes" } } -- This is important!
} }
} },
{ "filter_location",
{ { "filter_adjacent_location", { x = p.x, y = p.y } } }
}
}
--print(' number targets: ',#targets)
local attack_hex_occupied = false
if unit_in_way then attack_hex_occupied = true end
for j,t in pairs(targets) do
local att_stats, def_stats = nil, nil
if cfg.simulate_combat then
att_stats, def_stats = wesnoth.simulate_combat(unit, t)
end
table.insert(attacks, {
dst = { x = p.x, y = p.y },
src = { x = x1, y = y1 },
target = { x = t.x, y = t.y },
att_stats = att_stats,
def_stats = def_stats,
attack_hex_occupied = attack_hex_occupied
} )
end
-- Put unit(s) back
wesnoth.put_unit(x1, y1, unit)
if unit_in_way then wesnoth.put_unit(p.x, p.y, unit_in_way) end
end
end
return attacks
end
function ai_helper.get_attacks(units, cfg)
-- Wrapper function for ai_helper.get_attacks_unit
-- Returns the same sort of table (and cfg has the same structure), but for the attacks of several units
local attacks = {}
for k,u in pairs(units) do
local attacks_unit = ai_helper.get_attacks_unit(u, cfg)
if attacks_unit[1] then
for i,a in ipairs(attacks_unit) do
table.insert(attacks, a)
end
end
end
return attacks
end
function ai_helper.add_next_attack_combo_level(combos, attacks)
-- This is called from ai_helper.get_attack_combos_full() and
-- builds up the combos for the next recursion level.
-- It also calls the next recursion level, if possible
-- Important: function needs to make a copy of the input array, otherwise original is changed
-- Set up the array, if this is the first recursion level
if (not combos) then combos = {} end
-- Array to hold combinations for this recursion level only
local combos_this_level = {}
for i,a in ipairs(attacks) do
local dst = a.dst.y + a.dst.x * 1000. -- attack hex (src)
local src = a.src.y + a.src.x * 1000. -- attacker hex (dst)
if (not combos[1]) then -- if this is the first recursion level, set up new combos for this level
--print('New array')
local move = {}
move[dst] = src
table.insert(combos_this_level, move)
else
-- Otherwise, we need to go through the already existing elements in 'combos'
-- to see if either hex, or attacker is already used; and then add new attack to each
for j,combo in ipairs(combos) do
local this_combo = {} -- needed because tables are pointers, need to create a separate one
local add_combo = true
for d,s in pairs(combo) do
if (d == dst) or (s == src) then
add_combo = false
break
end
this_combo[d] = s -- insert individual moves to a combo
end
if add_combo then -- and add it into the array, if it contains only unique moves
this_combo[dst] = src
table.insert(combos_this_level, this_combo)
end
end
end
end
local combos_next_level = {}
if combos_this_level[1] then -- If moves were found for this level, also find those for the next level
combos_next_level = ai_helper.add_next_attack_combo_level(combos_this_level, attacks)
end
-- Finally, combine this level and next level combos
combos_this_level = ai_helper.array_merge(combos_this_level, combos_next_level)
return combos_this_level
end
function ai_helper.get_attack_combos_full(units, enemy)
-- Calculate attack combination result by 'units' on 'enemy'
-- All combinations of all units are taken into account, as well as their order
-- This can result in a _very_ large number of possible combinations
-- Use ai_helper.get_attack_combos() instead if order does not matter
-- Return value:
-- 1. Attack combinations in form { dst = src }
-- The combos are obtained by recursive call of ai_helper.add_next_attack_combo_level()
local attacks = ai_helper.get_attacks(units)
--print('# all attacks', #attacks)
-- Eliminate those that are not on 'enemy'
for i = #attacks,1,-1 do
if (attacks[i].target.x ~= enemy.x) or (attacks[i].target.y ~= enemy.y) then
table.remove(attacks, i)
end
end
--print('# enemy attacks', #attacks)
if (not attacks[1]) then return {} end
-- This recursive function does all the work:
local combos = ai_helper.add_next_attack_combo_level(combos, attacks)
return combos
end
function ai_helper.get_attack_combos(units, enemy, cfg)
-- Calculate attack combination result by 'units' on 'enemy'
-- All the unit/hex combinations are considered, but without specifying the order of the
-- attacks. Use ai_helper.get_attack_combos_full() if order matters.
-- cfg: A config table to be passed on to ai_helper.get_attacks
-- Return values:
-- 1. Attack combinations in form { dst = src }
-- 2. All the attacks indexed by [dst][src]
-- We don't need the full attacks here, just the coordinates,
-- so for speed reasons, we do not use ai_helper.get_attacks()
-- For units on the current side, we need to make sure that
-- there isn't a unit in the way that cannot move any more
-- TODO: generalize it so that it works not only for units with moves=0, but blocked units etc.
local blocked_hexes = LS.create()
if units[1] and (units[1].side == wesnoth.current.side) then
local all_units = wesnoth.get_units { side = wesnoth.current.side }
for i,u in ipairs(all_units) do
if (u.moves == 0) then
blocked_hexes:insert(u.x, u.y)
end
end
end
--ai_helper.print_ts('blocked_hexes:size()', blocked_hexes:size())
local old_moves = {}
-- For sides other than the current, we always use max_moves,
-- for the current side we always use current moves
for i,u in ipairs(units) do
if (u.side ~= wesnoth.current.side) then
old_moves[i] = u.moves
u.moves = u.max_moves
end
end
-- Find which units in 'units' can get to hexes next to the enemy
local attacks_dst_src = {}
local found_attacks = false
for x, y in H.adjacent_tiles(enemy.x, enemy.y) do
-- Make sure the hex is not occupied by unit that cannot move out of the way
local dst = x * 1000 + y
for i,u in ipairs(units) do
if ((u.x == x) and (u.y == y)) or (not blocked_hexes:get(x, y)) then
-- helper.distance_between() is much faster than wesnoth.find_path()
--> pre-filter using the former
local cost = H.distance_between(u.x, u.y, x, y)
-- If the distance is <= the unit's MP, then see if it can actually get there
-- This also means that only short paths have to be evaluated (in most situations)
if (cost <= u.moves) then
local path -- since cost is already defined outside this block
path, cost = wesnoth.find_path(u, x, y)
end
if (cost <= u.moves) then
-- for attack by no unit on this hex
if (not attacks_dst_src[dst]) then
attacks_dst_src[dst] = { 0, u.x * 1000 + u.y }
found_attacks = true -- since attacks_dst_src is not a simple array, this is easier
else
table.insert(attacks_dst_src[dst], u.x * 1000 + u.y )
end
end
end
end
end
-- Reset moves for all units
for i,u in ipairs(units) do
if (u.side ~= wesnoth.current.side) then
u.moves = old_moves[i]
end
end
--ai_helper.print_ts('Attacks selected', found_attacks)
if (not found_attacks) then return {}, {} end
-- Now we set up an array of all attack combinations
-- at this time, this includes all the 'no unit attacks this hex' elements
-- which have a value of 0 for 'src'
-- They need to be kept in this part, so that we get the combos that do not
-- use the maximum amount of units possible. They will be eliminated below.
local attack_array = {}
-- For all values of 'dst'
for dst,ads in pairs(attacks_dst_src) do
local org_array = ai_helper.table_copy(attack_array)
attack_array = {}
-- Go through all the values of 'src'
for i,src in ipairs(ads) do
-- If the array does not exist, set it up
if (not org_array[1]) then
local tmp = {}
tmp[dst] = src
table.insert(attack_array, tmp)
else -- otherwise, add the new dst-src pair to each element of the existing array
for j,o in ipairs(org_array) do
-- but only do so if that 'src' value does not exist already
-- except for 0's those all need to be kept
local add_attack = true
for d,s in pairs(o) do
if (s == src) and (src ~=0) then
add_attack = false
break
end
end
-- Finally, add it to the array
if add_attack then
local tmp = ai_helper.table_copy(o)
tmp[dst] = src
table.insert(attack_array, tmp)
end
end
end
end
end
--ai_helper.print_ts('#attack_array before:', #attack_array)
-- Now eliminate all the 0s
-- Also eliminate the combo that has no attacks on any hex (all zeros)
local i_empty = 0
for i,att in ipairs(attack_array) do
local count = 0
for dst,src in pairs(att) do
if (src == 0) then
att[dst] = nil
else
count = count + 1
end
end
if (count == 0) then i_empty = i end
end
-- This last step eliminates the "empty attack combo" (the one with all zeros)
table.remove(attack_array, i_empty)
--ai_helper.print_ts('#attack_array after:', #attack_array)
return attack_array
end
function ai_helper.get_unit_time_of_day_bonus(alignment, lawful_bonus)
local multiplier = 1
if (lawful_bonus ~= 0) then
if (alignment == 'lawful') then
multiplier = (1 + lawful_bonus / 100.)
elseif (alignment == 'chaotic') then
multiplier = (1 - lawful_bonus / 100.)
elseif (alignment == 'liminal') then
multipler = (1 - math.abs(lawful_bonus) / 100.)
end
end
return multiplier
end
return ai_helper